206 resultados para component classification
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
BACKGROUND: Inherited ichthyoses belong to a large, clinically and etiologically heterogeneous group of mendelian disorders of cornification, typically involving the entire integument. Over the recent years, much progress has been made defining their molecular causes. However, there is no internationally accepted classification and terminology. OBJECTIVE: We sought to establish a consensus for the nomenclature and classification of inherited ichthyoses. METHODS: The classification project started at the First World Conference on Ichthyosis in 2007. A large international network of expert clinicians, skin pathologists, and geneticists entertained an interactive dialogue over 2 years, eventually leading to the First Ichthyosis Consensus Conference held in Sorèze, France, on January 23 and 24, 2009, where subcommittees on different issues proposed terminology that was debated until consensus was reached. RESULTS: It was agreed that currently the nosology should remain clinically based. "Syndromic" versus "nonsyndromic" forms provide a useful major subdivision. Several clinical terms and controversial disease names have been redefined: eg, the group caused by keratin mutations is referred to by the umbrella term, "keratinopathic ichthyosis"-under which are included epidermolytic ichthyosis, superficial epidermolytic ichthyosis, and ichthyosis Curth-Macklin. "Autosomal recessive congenital ichthyosis" is proposed as an umbrella term for the harlequin ichthyosis, lamellar ichthyosis, and the congenital ichthyosiform erythroderma group. LIMITATIONS: As more becomes known about these diseases in the future, modifications will be needed. CONCLUSION: We have achieved an international consensus for the classification of inherited ichthyosis that should be useful for all clinicians and can serve as reference point for future research.
Resumo:
The 2008 Data Fusion Contest organized by the IEEE Geoscience and Remote Sensing Data Fusion Technical Committee deals with the classification of high-resolution hyperspectral data from an urban area. Unlike in the previous issues of the contest, the goal was not only to identify the best algorithm but also to provide a collaborative effort: The decision fusion of the best individual algorithms was aiming at further improving the classification performances, and the best algorithms were ranked according to their relative contribution to the decision fusion. This paper presents the five awarded algorithms and the conclusions of the contest, stressing the importance of decision fusion, dimension reduction, and supervised classification methods, such as neural networks and support vector machines.
Resumo:
Complex and variable morphological phenotypes pose a major challenge to the histopathological classification of neuroepithelial tumors. This applies in particular for low-grade gliomas and glio-neuronal tumors. Recently, we and others have identified microtubule-associated protein-2 (MAP2) as an immunohistochemical marker expressed in the majority of glial tumors. Characteristic cell morphologies can be recognized by MAP2 immunoreactivity in different glioma entities, i.e., process sparse oligodendroglial versus densely ramified astrocytic elements. Here, we describe MAP2-immunoreactivity patterns in a large series of various neuroepithelial tumors and related neoplasms (n = 960). Immunohistochemical analysis led to the following conclusions: (1) specific pattern of MAP2-positive tumor cells can be identified in 95% of glial neoplasms; (2) ependymal tumors do not express MAP2 in their rosette-forming cell component; (3) tumors of the pineal gland as well as malignant embryonic tumors are also characterized by abundant MAP2 immunoreactivity; (4) virtually no MAP2 expression can be observed in the neoplastic glial component of glio-neuronal tumors, i.e. gangliogliomas; (5) malignant glial tumor variants (WHO grade III or IV) exhibit different and less specific MAP2 staining patterns compared to their benign counterparts (WHO grade I or II); (6) with the exception of melanomas and small cell lung cancers, MAP2 expression is very rare in metastatic and non-neuroepithelial tumors; (7) glial MAP2 expression was not detected in 56 non-neoplastic lesions. These data point towards MAP2 as valuable diagnostic tool for pattern recognition and differential diagnosis of low-grade neuroepithelial tumors.
Resumo:
Correct positioning of the tibial component in total knee arthroplasty (TKA) must take into account both an optimal bone coverage (defined by a maximal cortical bearing with posteromedial and anterolateral support) and satisfactory patellofemoral tracking. Consequently, a compromise position must be found by the surgeon during the operation to simultaneously meet these two requirements. Moreover, tibial tray positioning depends upon the tibial torsion, which has been shown to act mainly in the proximal quarter of the tibia. Therefore, the correct application of the tibial tray is also theoretically related to the level of bone resection. In this study, we first quantified the torsional profile given by an optimal bone coverage for a symmetrical tibial tray design and for an asymmetrical one. Then, for the two types of tibial trays, we measured the angle difference between optimal bone coverage and an alignment on the middle of the tibial tubercule. Results showed that the values of the torsional profile given by the symmetrical tray were more scattered than those from the asymmetrical one. However, determination of the mean differential angle between the position providing optimal bone coverage and the one providing the best patellofemoral tracking indicated that the symmetrical prosthetic tray offered the best compromise between these two requirements. Although the tibiofemoral joint is known to be asymmetric in both shape and dimension, the asymmetrical tray chosen in this study was found to fulfill this compromise with more difficulty.
Resumo:
The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.
Resumo:
HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.
Resumo:
To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.
Resumo:
Introduction: Measures of the degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal, and dural sac cross sectional area vary, and do not correlate with symptoms or results of surgery. We created a grading system, comprised of seven categories, based on the morphology of the dural sac and its contents as seen on T2 axial images. The categories take into account the ratio of rootlet/ CSF content. Grade A indicates no significant compression, grade D is equivalent to a total myelograhic block. We compared this classification with commonly used criteria of severity of stenosis. Methods: Fifty T2 axial MRI images taken at disc level from 27 symptomatic LSS patients undergoing decompressive surgery were classified twice by two radiologists and three spinal surgeons working at different institutions and countries. Dural sac cross-sectional surface area and AP diameter of the canal were measured both at disc and pedicle level from DICOM images using OsiriX software. Intraand inter-observer reliability were assessed using Cohen's, Fleiss' kappa statistics, and t test. Results: For the morphological grading the average intra-and inter observer kappas were 0.76 and 0.69+, respectively, for physicians working in the study originating country. Combining all observers the kappa values were 0.57 ± 0.19. and 0.44 ± 0.19, respectively. AP diameter and dural sac cross-sectional area measurements showed no statistically significant differences between observers. No correlation between morphological grading and AP diameter or dural sac crosssectional areawas observed in 13 (26%) and 8 cases (16%), respectively. Discussion: The proposed morphological grading relies on the identification of the dural sac and CSF better seen on full MRI series. This was not available to the external observers, which might explain the lower overall kappa values. Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. The absence of a strict correlation with the dural sac surface suggests that measuring the surface alone might be insufficient in defining LSS as it is essentially a mismatch between the spinal canal and its contents. This grading is now adopted in our unit and further studies concentrating on relation between morphology, clinical symptoms and surgical results are underway.
Resumo:
Introduction: Responses to external stimuli are typically investigated by averaging peri-stimulus electroencephalography (EEG) epochs in order to derive event-related potentials (ERPs) across the electrode montage, under the assumption that signals that are related to the external stimulus are fixed in time across trials. We demonstrate the applicability of a single-trial model based on patterns of scalp topographies (De Lucia et al, 2007) that can be used for ERP analysis at the single-subject level. The model is able to classify new trials (or groups of trials) with minimal a priori hypotheses, using information derived from a training dataset. The features used for the classification (the topography of responses and their latency) can be neurophysiologically interpreted, because a difference in scalp topography indicates a different configuration of brain generators. An above chance classification accuracy on test datasets implicitly demonstrates the suitability of this model for EEG data. Methods: The data analyzed in this study were acquired from two separate visual evoked potential (VEP) experiments. The first entailed passive presentation of checkerboard stimuli to each of the four visual quadrants (hereafter, "Checkerboard Experiment") (Plomp et al, submitted). The second entailed active discrimination of novel versus repeated line drawings of common objects (hereafter, "Priming Experiment") (Murray et al, 2004). Four subjects per experiment were analyzed, using approx. 200 trials per experimental condition. These trials were randomly separated in training (90%) and testing (10%) datasets in 10 independent shuffles. In order to perform the ERP analysis we estimated the statistical distribution of voltage topographies by a Mixture of Gaussians (MofGs), which reduces our original dataset to a small number of representative voltage topographies. We then evaluated statistically the degree of presence of these template maps across trials and whether and when this was different across experimental conditions. Based on these differences, single-trials or sets of a few single-trials were classified as belonging to one or the other experimental condition. Classification performance was assessed using the Receiver Operating Characteristic (ROC) curve. Results: For the Checkerboard Experiment contrasts entailed left vs. right visual field presentations for upper and lower quadrants, separately. The average posterior probabilities, indicating the presence of the computed template maps in time and across trials revealed significant differences starting at ~60-70 ms post-stimulus. The average ROC curve area across all four subjects was 0.80 and 0.85 for upper and lower quadrants, respectively and was in all cases significantly higher than chance (unpaired t-test, p<0.0001). In the Priming Experiment, we contrasted initial versus repeated presentations of visual object stimuli. Their posterior probabilities revealed significant differences, which started at 250ms post-stimulus onset. The classification accuracy rates with single-trial test data were at chance level. We therefore considered sub-averages based on five single trials. We found that for three out of four subjects' classification rates were significantly above chance level (unpaired t-test, p<0.0001). Conclusions: The main advantage of the present approach is that it is based on topographic features that are readily interpretable along neurophysiologic lines. As these maps were previously normalized by the overall strength of the field potential on the scalp, a change in their presence across trials and between conditions forcibly reflects a change in the underlying generator configurations. The temporal periods of statistical difference between conditions were estimated for each training dataset for ten shuffles of the data. Across the ten shuffles and in both experiments, we observed a high level of consistency in the temporal periods over which the two conditions differed. With this method we are able to analyze ERPs at the single-subject level providing a novel tool to compare normal electrophysiological responses versus single cases that cannot be considered part of any cohort of subjects. This aspect promises to have a strong impact on both basic and clinical research.