226 resultados para commercial sex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi are important symbionts that enhance plant growth. They were thought to have been asexual for hundreds of millions of years. A new study reveals that the fungi actually possess highly conserved genetic machinery for completion of meiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex-biased dispersal is an almost ubiquitous feature of mammalian life history, but the evolutionary causes behind these patterns still require much clarification. A quarter of a century since the publication of seminal papers describing general patterns of sex-biased dispersal in both mammals and birds, we review the advances in our theoretical understanding of the evolutionary causes of sex-biased dispersal, and those in statistical genetics that enable us to test hypotheses and measure dispersal in natural populations. We use mammalian examples to illustrate patterns and proximate causes of sex-biased dispersal, because by far the most data are available and because they exhibit an enormous diversity in terms of dispersal strategy, mating and social systems. Recent studies using molecular markers have helped to confirm that sex-biased dispersal is widespread among mammals and varies widely in direction and intensity, but there is a great need to bridge the gap between genetic information, observational data and theory. A review of mammalian data indicates that the relationship between direction of sex-bias and mating system is not a simple one. The role of social systems emerges as a key factor in determining intensity and direction of dispersal bias, but there is still need for a theoretical framework that can account for the complex interactions between inbreeding avoidance, kin competition and cooperation to explain the impressive diversity of patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overwhelming predominance of sexual reproduction in nature is surprising given that sex is expected to confer profound costs in terms of production of males and the breakup of beneficial allele combinations. Recognition of these theoretical costs was the inspiration for a large body of empirical research-typically focused on comparing sexual and asexual organisms, lineages, or genomes-dedicated to identifying the advantages and maintenance of sex in natural populations. Despite these efforts, why sex is so common remains unclear. Here, we argue that we can generate general insights into the advantages of sex by taking advantage of parthenogenetic taxa that differ in such characteristics as meiotic versus mitotic offspring production, ploidy level, and single versus multiple and hybrid versus non-hybrid origin. We begin by evaluating benefits that sex can confer via its effects on genetic linkage, diversity, and heterozygosity and outline how the three classes of benefits make different predictions for which type of parthenogenetic lineage would be favored over others. Next, we describe the type of parthenogenetic model system (if any) suitable for testing whether the hypothesized benefit might contribute to the maintenance of sex in natural populations, and suggest groups of organisms that fit the specifications. We conclude by discussing how empirical estimates of characteristics such as time since derivation and number of independent origins of asexual lineages from sexual ancestors, ploidy levels, and patterns of molecular evolution from representatives of these groups can be used to better understand which mechanisms maintain sex in natural populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4-7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory predicts that males adapt to sperm competition by increasing their investment in testis mass to transfer larger ejaculates. Experimental and comparative data support this prediction. Nevertheless, the relative importance of sperm competition in testis size evolution remains elusive, because experiments vary only sperm competition whereas comparative approaches confound it with other variables, in particular male mating rate. We addressed the relative importance of sperm competition and male mating rate by taking an experimental evolution approach. We subjected populations of Drosophila melanogaster to sex ratios of 1:1, 4:1, and 10:1 (female:male). Female bias decreased sperm competition but increased male mating rate and sperm depletion. After 28 generations of evolution, males from the 10:1 treatment had larger testes than males from other treatments. Thus, testis size evolved in response to mating rate and sperm depletion, not sperm competition. Furthermore, our experiment demonstrated that drift associated with sex ratio distortion limits adaptation; testis size only evolved in populations in which the effect of sex ratio bias on the effective population size had been compensated by increasing the numerical size. We discuss these results with respect to reproductive evolution, genetic drift in natural and experimental populations, and consequences of natural sex ratio distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using game theory, we developed a kin-selection model to investigate the consequences of local competition and inbreeding depression on the evolution of natal dispersal. Mating systems have the potential to favor strong sex biases in dispersal because sex differences in potential reproductive success affect the balance between local resource competition and local mate competition. No bias is expected when local competition equally affects males and females, as happens in monogamous systems and also in polygynous or promiscuous ones as long as female fitness is limited by extrinsic factors (breeding resources). In contrast, a male-biased dispersal is predicted when local mate competition exceeds local resource competition, as happens under polygyny/promiscuity when female fitness is limited by intrinsic factors (maximal rate of processing resources rather than resources themselves). This bias is reinforced by among-sex interactions: female philopatry enhances breeding opportunities for related males, while male dispersal decreases the chances that related females will inbreed. These results meet empirical patterns in mammals: polygynous/promiscuous species usually display a male-biased dispersal, while both sexes disperse in monogamous species. A parallel is drawn with sex-ratio theory, which also predicts biases toward the sex that suffers less from local competition. Optimal sex ratios and optimal sex-specific dispersal show mutual dependence, which argues for the development of coevolution models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Path integration is known to provide information to keep track of spatial location. Surprisingly, few investigations concerning sex differences in computation of the traveling distance have been done. This work was aimed at analyzing the reproduction of both passive and active linear displacements in women and men. To this end, the displacement of blindfolded subjects was done in a wheelchair, then on foot, three times in each condition for a fixed distance. Copies of passive and active traveling distance, distance estimations and pointing responses towards the starting point were analyzed. In passive condition and comparatively to men, women error was larger. Whereas traveling distance was generally underestimated in women, it was overestimated in men. In active condition, no sex differences were observed. When blindfolded subjects have to estimate the traveling distance, the female error was larger than the male one. But, when subjects were asked to indicate the visual cue corresponding to the traveling distance, the male error was larger than the female one. Finally, pointing to the starting point (0°) after a whole-body rotation showed a larger deviation from 0° in men than in women. These results suggest that sex of the subjects influence brain computation of path integration information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the noctule bat (Nyctalus noctula), in which the mitochondrial F(ST) is about 10 times that revealed by nuclear markers, to address two questions. We first verified whether random dispersal of one sex is compatible with highly contrasted mitochondrial and nuclear population structures. Using computer simulations, we then assessed the power of multilocus population differentiation tests when the expected population structure departs only slightly from panmixia. Using an island model with sex-specific demographic parameters, we found that random male dispersal is consistent with the population structure observed in the noctule. However, other parameter combinations are also compatible with the data. We computed the minimum sex bias in dispersal (at least 69% of the dispersing individuals are males), a result that would not be available if we had used more classical population genetic models. The power of multilocus population differentiation tests was unexpectedly high, the tests being significant in almost 100% of the replicates, although the observed population structure infered from nuclear markers was extremely low (F(ST) = 0.6%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Street-based sex workers (SSWs) in Lausanne, Switzerland, are poorly characterised. We set out to quantify potential vulnerability factors in this population and to examine SSW healthcare use and unmet healthcare requirements. METHODS: We conducted a cross-sectional questionnaire-based survey among SSWs working in Lausanne's red light district between 1 February and 31 July 2010, examining SSW socio-demographic characteristics and factors related to their healthcare. RESULTS: We interviewed 50 SSWs (76% of those approached). A fifth conducted their interviews in French, the official language in Lausanne. 48 participants (96%) were migrants, of whom 33/48 (69%) held no residence permit. 22/50 (44%) had been educated beyond obligatory schooling. 28/50 (56%) had no health insurance. 18/50 (36%) had been victims of physical violence. While 36/50 (72%) had seen a doctor during the preceding 12 months, only 15/50 (30%) were aware of a free clinic for individuals without health insurance. Those unaware of free services consulted emergency departments or doctors outside Switzerland. Gynaecology, primary healthcare and dental services were most often listed as needed. Two individuals (of 50, 4%) disclosed positive HIV status; of the others, 24/48 (50%) had never had an HIV test. CONCLUSIONS: This vulnerable population comprises SSWs who, whether through mobility, insufficient education or language barriers, are unaware of services they are entitled to. With half the participants reporting no HIV testing, there is a need to enhance awareness of available facilities as well as to increase provision and uptake of HIV testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Etant données la complexité et la redondance des réseaux de gènes influençant de nombreux phénotypes, l'étude des rares cas d'un locus unique ayant des effets importants sur de nombreux phénotypes peut fournir des informations cruciales sur l'évolution des traits complexes. Nous avons séquencé le génome de la fourmi de feu Solenopsis invicta pour étudier comment l'expression des gènes détermine les effets majeurs et étendus de deux loci uniques sur le phénotype. Le premier locus concerne la détermination du sexe par le modèle des allèles complémentaires. Ce locus est connu pour déterminer le sexe chez tous les hyménoptères mais n'a été caractérisé que chez les abeilles. Les hétérozygotes pour ce locus se développent en reines diploïdes (ou ouvrières stériles) alors que les homozygotes se développent en mâles diploïdes incapables de produire du sperme et les hémizygotes en mâles haploïdes fertiles. Nous avons comparé l'expression des gènes entre les reines et les deux types de mâles au stade pupe, ainsi que 1 et 11 jours après l'émergence. Nous avons trouvé un changement prononcé de l'expression des gènes chez les mâles diploïdes, passant de très proche de celle des reines au stade pupe à identique aux mâles haploïdes 11 jours après l'émergence. Cela signifie que les mâles diploïdes sont condamnés à être stériles parce que les effets après émergence du locus de détermination du sexe ne per¬mettent pas d'effacer les effets de la ploïdie sur l'expression des gènes pendant le stade pupe, quand la spermatogénèse prend place. Le second locus aux effets majeurs que nous avons étudié est le supergène dit "green beard", qui consiste en 616 gènes couvrant 55% d'un chromosome (13 Mb) et est caractérisé par une absence de recombinaison entre les deux variants du supergène : "Social B" et "Social b" (SB et Sb). Au travers de l'effet "green beard", par lequel les ouvrières avec le supergène Sb discriminent favorablement les reines qui partagent ce supergène de façon perceptible, le génotype des reines fondatrices au niveau de ce supergène détermine l'organisation de la colonie : soit elle contient une seule reine SB/SB, soit plusieurs reines SB/Sb. Nous avons montré que le chromosome Sb a évolué comme le chromosome Y, accumulant probablement des allèles favorables dans des colonies avec plusieurs reines mais défavorables dans des colonies avec une seule reine (cf. gènes sexuellement antagonistes), ainsi que des transposons et des séquences répéti¬tives. Nous avons également montré que le polymorphisme du supergène cause de grandes différences d'expression chez les ouvrières et particulièrement les reines mais pas chez les mâles. Pour comprendre comment le polymorphisme du supergène chez les reines peut affecter l'organisation de la colonie, nous avons comparé l'expression entre les génotypes SB/SB et SB/Sb chez des reines vierges (1 et 11 jours) et des reines matures. Nous avons montré que les reines SB/SB sur-régulent des gènes impliqués dans la reproduction, expli-quant pourquoi elle grandissent plus rapidement et peuvent fonder des colonies de façon indépendante, tandis que les reines SB/Sb (qui ne peuvent fonder une nouvelle colonie) sur-régulent des gènes de signalement chimique qui affectent l'organisation des colonies par l'effet "green beard". - Given the complexity and redundancy of the gene networks that underlie many pheno- types, the study of rare cases of a single locus having major effects on many phenotypes can give powerful insights into the evolution of complex traits. We sequenced the genome of Solenopsis invicta fire ants to study how gene expression mediates the widespread major effects of two single loci on phenotype. The first is the complementary sex-determining locus, which is known to exist in most Hymenoptera despite being characterized only for honeybees. Heterozygotes at this locus become diploid queens (or sterile workers), homozy¬gotes become aspermic diploid males, and hemizygotes become fertile haploid males. We compared gene expression between queens and both types of males in pupae and 1 and 11 days after eclosion. We found a pronounced shift in gene expression in diploid males, from being nearly identical to queens as pupae to identical to haploid males 11 days after eclosion. This means that diploid males are condemned to sterility because the overriding effects of the sex locus after eclosion cannot undo the ploidy effects on expression during the pupal stage, when spermatogenesis must be completed. The second locus with major ef¬fects that we studied was the so-called "green beard" supergene, which consists of 616 genes encompassing 55% of one chromosome (13 Mb), without recombination between the two variants "Social B" and "Social b" (SB and Sb) supergene. Through the green beard effect, i.e. workers with the Sb supergene discriminating in favor of queens who perceptibly share this supergene, the founding queen's genotype at the supergene determines colony organi¬zation: either headed by a single SB/SB queen or many SB/Sb queens. We show that the Sb chromosome evolved like a Y-chromosome, probably accumulating alleles beneficial in multi-queen colonies but disadvantageous in single-queen colonies (cf. sexually antagonistic genes), as well as transposons and repetitive sequences. We also show that the polymor¬phism of the supergene causes widespread expression differences in workers and especially queens but not in males. To understand how the polymorphism at the supergene in queen can transform colony organization, we compared the expression between SB/SB and SB/Sb virgin queens (1 and 11 days) and mother queens. We show that SB/SB queens up-regulate genes involved in reproduction, explaining why they mature faster and can found colonies independently, while SB/Sb queens (which cannot found colonies) up-regulate chemical signaling genes that can transform colonies through the green beard effect.