228 resultados para chromatic variants
Resumo:
Arbuscular mycorrhizal fungi (AMF) are an ecologically important group of fungi. Previous studies showed the presence of divergent copies of beta-tubulin and V-type vacuolar H+-ATPase genes in AMF genomes and suggested horizontal gene transfer from host plants or mycoparasites to AMF. We sequenced these genes from DNA isolated from an in vitro cultured isolate of Glomus intraradices that was free of any obvious contaminants. We found two highly variable beta-tubulin sequences and variable H+-ATPase sequences. Despite this high variation, comparison of the sequences with those in gene banks supported a glomeromycotan origin of G. intraradices beta-tubulin and H+-ATPase sequences. Thus, our results are in sharp contrast with the previously reported polyphyletic origin of those genes. We present evidence that some highly divergent sequences of beta-tubulin and H+-ATPase deposited in the databases are likely to be contaminants. We therefore reject the prediction of horizontal transfer to AMF genomes. High differences in GC content between glomeromycotan sequences and sequences grouping in other lineages are shown and we suggest they can be used as an indicator to detect such contaminants. H+-ATPase phylogeny gave unexpected results and failed to resolve fungi as a natural group. beta-Tubulin phylogeny supported Glomeromeromycota as sister group of the Chytridiomycota. Contrasts between our results and trees previously generated using rDNA sequences are discussed.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
Resumo:
Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.
Resumo:
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Resumo:
BACKGROUND: Genotypes obtained with commercial SNP arrays have been extensively used in many large case-control or population-based cohorts for SNP-based genome-wide association studies for a multitude of traits. Yet, these genotypes capture only a small fraction of the variance of the studied traits. Genomic structural variants (GSV) such as Copy Number Variation (CNV) may account for part of the missing heritability, but their comprehensive detection requires either next-generation arrays or sequencing. Sophisticated algorithms that infer CNVs by combining the intensities from SNP-probes for the two alleles can already be used to extract a partial view of such GSV from existing data sets. RESULTS: Here we present several advances to facilitate the latter approach. First, we introduce a novel CNV detection method based on a Gaussian Mixture Model. Second, we propose a new algorithm, PCA merge, for combining copy-number profiles from many individuals into consensus regions. We applied both our new methods as well as existing ones to data from 5612 individuals from the CoLaus study who were genotyped on Affymetrix 500K arrays. We developed a number of procedures in order to evaluate the performance of the different methods. This includes comparison with previously published CNVs as well as using a replication sample of 239 individuals, genotyped with Illumina 550K arrays. We also established a new evaluation procedure that employs the fact that related individuals are expected to share their CNVs more frequently than randomly selected individuals. The ability to detect both rare and common CNVs provides a valuable resource that will facilitate association studies exploring potential phenotypic associations with CNVs. CONCLUSION: Our new methodologies for CNV detection and their evaluation will help in extracting additional information from the large amount of SNP-genotyping data on various cohorts and use this to explore structural variants and their impact on complex traits.
Resumo:
The S- and F-forms of alpha-1 acid glycoprotein (AAG) variants have been isolated by isoelectric focusing with immobilines from commercially available AAG. In equilibrium dialysis experiments using a multicompartmental system, a higher affinity for various basic drugs has been found with S- in comparison with F-AAG: Amitriptyline, nortriptyline, imipramine, desipramine, trimipramine, methadone, thioridazine, clomipramine, desmethylclomipramine, and maprotiline. The selectivity (binding to S- vs. F-AAG) is the most pronounced for methadone and the lowest for thioridazine, while it is absent for the acidic drug mephenytoin.
Resumo:
Recently, a locus centred on rs9273349 in the HLA-DQ region emerged from genome-wide association studies of adult-onset asthma. We aimed to further investigate the role of human leukocyte antigen (HLA) class II in adult-onset asthma and a possible interaction with occupational exposures. We imputed classical HLA-II alleles from 7579 single-nucleotide polymorphisms in 6025 subjects (1202 with adult-onset asthma) from European cohorts: ECRHS, SAPALDIA, EGEA and B58C, and from surveys of bakers and agricultural workers. Based on an asthma-specific job-exposure matrix, 2629 subjects had ever been exposed to high molecular weight (HMW) allergens. We explored associations between 23 common HLA-II alleles and adult-onset asthma, and tested for gene-environment interaction with occupational exposure to HMW allergens. Interaction was also tested for rs9273349. Marginal associations of classical HLA-II alleles and adult-onset asthma were not statistically significant. Interaction was detected between the DPB1*03:01 allele and exposure to HMW allergens (p = 0.009), in particular to latex (p = 0.01). In the unexposed group, the DPB1*03:01 allele was associated with adult-onset asthma (OR 0.67, 95%CI 0.53-0.86). HMW allergen exposures did not modify the association of rs9273349 with adult-onset asthma. Common classical HLA-II alleles were not marginally associated with adult-onset asthma. The association of latex exposure and adult-onset asthma may be modified by DPB1*03:01.
Resumo:
This volume is the 10th issue of Variants . In keeping with the mission of the European Society for Textual Scholarship, the articles are richly interdisciplinary and transnational. They bring to bear a wide range of topics and disciplines on the field of textual scholarship: historical linguistics, digital scholarly editing, classical philology, Dutch, English, Finnish and Swedish Literature, publishing traditions in Japan, book history, cultural history and folklore. The questions that are explored - what texts are worth editing? what is the nature of the relationship between text, work, document and book? what is a critical digital edition? - all return to fundamental issues that have been at the heart of the editorial discipline for decades. With refreshing insight they assess the increasingly hybrid nature of the theoretical considerations and practical methodologies employed by textual scholars, while reasserting the relevance and need for producing scholarly editions, whether in print or digital, and continuing advanced research in bibliographical codes, textual transmissions, genetic dossiers, the fluidity of texts and other such subjects that connect textual scholarship with broader investigations into our nations' literary culture and written heritage.
Resumo:
Human immunodeficiency virus type 1 uses ribosomal frameshifting for translation of the Gag-Pol polyprotein. Frameshift activities are thought to be tightly regulated. Analysis of gag p1 sequences from 270 plasma virions identified in 64% of the samples the occurrence of polymorphism that could lead to changes in thermodynamic stability of the stem-loop. Expression in Saccharomyces cerevisiae of p1-beta-galactosidase fusion proteins from 10 representative natural stem-loop variants and three laboratory mutant constructs (predicted the thermodynamic stability [Delta G degrees] ranging from -23.0 to -4.3 kcal/mol) identified a reduction in frameshift activity of 13 to 67% compared with constructs with the wild-type stem-loop (Delta G degrees, -23.5 kcal/mol). Viruses carrying stem-loops associated with greater than 60% reductions in frameshift activity presented profound defects in viral replication. In contrast, viruses with stem-loop structures associated with 16 to 42% reductions in frameshift efficiency displayed no significant viral replication deficit.
Resumo:
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis.
Resumo:
Uromodulin is expressed exclusively in the thick ascending limb and is the most abundant protein excreted in normal urine. Variants in UMOD, which encodes uromodulin, are associated with renal function, and urinary uromodulin levels may be a biomarker for kidney disease. However, the genetic factors regulating uromodulin excretion are unknown. We conducted a meta-analysis of urinary uromodulin levels to identify associated common genetic variants in the general population. We included 10,884 individuals of European descent from three genetic isolates and three urban cohorts. Each study measured uromodulin indexed to creatinine and conducted linear regression analysis of approximately 2.5 million single nucleotide polymorphisms using an additive model. We also tested whether variants in genes expressed in the thick ascending limb associate with uromodulin levels. rs12917707, located near UMOD and previously associated with renal function and CKD, had the strongest association with urinary uromodulin levels (P<0.001). In all cohorts, carriers of a G allele of this variant had higher uromodulin levels than noncarriers did (geometric means 10.24, 14.05, and 17.67 μg/g creatinine for zero, one, or two copies of the G allele). rs12446492 in the adjacent gene PDILT (protein disulfide isomerase-like, testis expressed) also reached genome-wide significance (P<0.001). Regarding genes expressed in the thick ascending limb, variants in KCNJ1, SORL1, and CAB39 associated with urinary uromodulin levels. These data indicate that common variants in the UMOD promoter region may influence urinary uromodulin levels. They also provide insights into uromodulin biology and the association of UMOD variants with renal function.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin's effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
To identify common variants influencing body mass index (BMI), we analyzed genome-wide association data from 16,876 individuals of European descent. After previously reported variants in FTO, the strongest association signal (rs17782313, P = 2.9 x 10(-6)) mapped 188 kb downstream of MC4R (melanocortin-4 receptor), mutations of which are the leading cause of monogenic severe childhood-onset obesity. We confirmed the BMI association in 60,352 adults (per-allele effect = 0.05 Z-score units; P = 2.8 x 10(-15)) and 5,988 children aged 7-11 (0.13 Z-score units; P = 1.5 x 10(-8)). In case-control analyses (n = 10,583), the odds for severe childhood obesity reached 1.30 (P = 8.0 x 10(-11)). Furthermore, we observed overtransmission of the risk allele to obese offspring in 660 families (P (pedigree disequilibrium test average; PDT-avg) = 2.4 x 10(-4)). The SNP location and patterns of phenotypic associations are consistent with effects mediated through altered MC4R function. Our findings establish that common variants near MC4R influence fat mass, weight and obesity risk at the population level and reinforce the need for large-scale data integration to identify variants influencing continuous biomedical traits.
Resumo:
Extensive population-based genome-wide association studies have identified an association between the FTO gene and BMI; however, the mechanism of action is still unknown. To determine whether FTO may influence weight regulation through psychological and behavioral factors, seven single-nucleotide polymorphisms (SNPs) of the FTO gene were genotyped in 1,085 individuals with anorexia nervosa (AN) and 677 healthy weight controls from the international Price Foundation Genetic Studies of Eating Disorders. Each SNP was tested in association with eating disorder phenotypes and measures that have previously been associated with eating behavior pathology: trait anxiety, harm-avoidance, novelty seeking, impulsivity, obsessionality, compulsivity, and concern over mistakes. After appropriate correction for multiple comparisons, no significant associations between individual FTO gene SNPs and eating disorder phenotypes or related eating behavior pathology were identified in cases or controls. Thus, this study found no evidence that FTO gene variants associated with weight regulation in the general population are associated with eating disorder phenotypes in AN participants or matched controls. © 2011 Wiley-Liss, Inc.
Resumo:
The relative occurrence of genetic variants of human alpha 1-acid glycoprotein (AGP) in relation to changes in glycosylation was studied in sera of patients with burn injury, media of cytokine-treated primary cultures of human hepatocytes and Hep 3B cells, and sera of transgenic mice expressing the human AGP-A gene. It is concluded (i) that the glycosylation of AGP was not dependent on its genetic expression and (ii) that both the variants determined by the AGP-A gene as well as by the AGP-B/B' genes are increased after inflammation or treatment with interleukins 1 and 6.