128 resultados para catalase inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Purpose: We aimed to investigate the safety, tolerability, and systemic diffusion of a single escalating dose of XG-102 (a 31-D-amino-acid peptide inhibiting JNK pathway activation), administered subconjunctivally in the treatment of post-surgery or post-trauma intraocular inflammation. Methods: This is a dose-escalating, tolerance Phase Ib study. Twenty patients with post-surgery or post-traumatic intraocular inflammation were assigned to 1 of the 4 dose escalating (45, 90, 450, or 900 μg XG-102) groups of 5 patients each. Patients were evaluated at 24, 48 h, 8, and 28 days following the administration of XG-102, including laboratory tests, standard eye examinations, vital signs, and occurrence of adverse events. A single plasma quantification of XG-102 was performed 30 min after administration, according to previous pharmacokinetics studies performed on volunteers. Results: A total of 17 non-serious adverse events, considered unrelated to the study treatment, were reported for 10 patients. The adverse event incidence was not related to the drug dose. All patients experienced a decrease in intraocular inflammation as of 24 h post-administration and this decrease was sustained up to 28 days thereafter. No patient required local injection or systemic administration of corticoids following the administration of XG-102. XG-102 was undetectable in the first 3 dose groups. In the fourth-dose group (900 μg) the XG-102 plasma levels were above the limit of detection for 3 patients and above the limit of quantification for 1 patient. Conclusions: In this first clinical trial using XG-102, administered as a single subconjunctival injection as adjunct therapy, in patients with recent post-surgery or post-trauma intraocular inflammation is safe and well tolerated. Further studies are required to evaluate its efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and clinical evidence indicates that non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors may have anti-cancer activities. Here we report on a patient with a metastatic melanoma of the leg who experienced a complete and sustained regression of skin metastases upon continuous single treatment with the cyclooxygenase-2 inhibitor rofecoxib. Our observations indicate that the inhibition of cyclooxygenase-2 can lead to the regression of disseminated skin melanoma metastases, even after failure of chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alveolar macrophages have the ability to downregulate immune processes in vitro. We have recently suggested the presence of interleukin-1 (IL-1) inhibitors in the supernatants of human bronchoalveolar lavage cells from patients with idiopathic pulmonary fibrosis or sarcoidosis. In the present study, we further analyze the cellular origin and the biologic properties of a 20- to 25-kD IL-1 inhibitor spontaneously produced by cultured human alveolar macrophages (AM). The inhibitor blocks IL-1-induced prostaglandin E2 production by human fibroblasts and the IL-1-related increase of phytohemagglutinin-induced murine thymocyte proliferation. After rigorous IL-1 alpha and IL-1 beta depletion, supernatants of lung macrophages specifically block the binding of IL-1 to its receptor on the murine thymoma cell line EL4-6.1 in a dose-dependent manner. These results indicate that AM from both normal donors and patients produce a specific IL-1 inhibitor that may be of importance in protecting the alveolar environment from the deleterious effects of excessive IL-1 production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plaque formation in vaccinia virus is inhibited by the compound N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH). We have isolated a mutant virus that forms wild-type plaques in the presence of the drug. Comparison of wild-type and mutant virus showed that both viruses produced similar amounts of infectious intracellular naked virus in the presence of the drug. In contrast to the mutant, no extracellular enveloped virus was obtained from IMCBH-treated cells infected with wild-type virus. Marker rescue experiments were used to map the mutation conferring IMCBH resistance to the mutant virus. The map position coincided with that of the gene encoding the viral envelope antigen of M(r) 37,000. Sequence analysis of both wild-type and mutant genes showed a single nucleotide change (G to T) in the mutant gene. In the deduced amino acid sequence, the mutation changes the codon for an acidic Asp residue in the wild-type gene to one for a polar noncharged Tyr residue in the mutant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT)-3 inhibitors play an important role in regulating immune responses. Galiellalactone (GL) is a fungal secondary metabolite known to interfere with the binding of phosphorylated signal transducer and activator of transcription (pSTAT)-3 as well of pSTAT-6 dimers to their target DNA in vitro. Intra nasal delivery of 50 μg GL into the lung of naive Balb/c mice induced FoxP3 expression locally and IL-10 production and IL-12p40 in RNA expression in the airways in vivo. In a murine model of allergic asthma, GL significantly suppressed the cardinal features of asthma, such as airway hyperresponsiveness, eosinophilia and mucus production, after sensitization and subsequent challenge with ovalbumin (OVA). These changes resulted in induction of IL-12p70 and IL-10 production by lung CD11c(+) dendritic cells (DCs) accompanied by an increase of IL-3 receptor α chain and indoleamine-2,3-dioxygenase expression in these cells. Furthermore, GL inhibited IL-4 production in T-bet-deficient CD4(+) T cells and down-regulated the suppressor of cytokine signaling-3 (SOCS-3), also in the absence of STAT-3 in T cells, in the lung in a murine model of asthma. In addition, we found reduced amounts of pSTAT-5 in the lung of GL-treated mice that correlated with decreased release of IL-2 by lung OVA-specific CD4(+) T cells after treatment with GL in vitro also in the absence of T-bet. Thus, GL treatment in vivo and in vitro emerges as a novel therapeutic approach for allergic asthma by modulating lung DC phenotype and function resulting in a protective response via CD4(+)FoxP3(+) regulatory T cells locally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. Conclusion: These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C. (HEPATOLOGY 2012).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. To investigate the effect of the endothelin(A) receptor inhibitor BQ-123 on the retinal arteriolar vasculature in minipig retinas in normal eyes and eyes with acute branch retinal vein occlusion (BRVO). Methods. Seven healthy eyes of seven minipigs and six eyes of six minipigs with experimental BRVO were evaluated under systemic anesthesia. An intravitreal juxta-arteriolar microinjection of 30 microL BQ-123 0.61 microg/mL (pH 7.4) was performed in all but one eye from each group, into which the physiologic saline vehicle alone was injected. Vessel-diameter changes were measured with a retinal vessel analyzer. Results. In healthy minipig retinas (n = 6), arteriolar diameter (+/-SD) increased 6.19% +/- 3.55% (P < 0.05), 25.98% +/- 2.37% (P < 0.001), 23.65% +/- 1.2% (P < 0.001), and 16.84% +/- 1.95% (P < 0.001), at 1, 5, 10, and 15 minutes, respectively, after BQ-123 microinjection. Two hours after experimental BRVO (n = 5), the retinal arteriolar diameter had decreased (13.07% +/- 5.7%; P < 0.01). One, 5, 10, and 15 minutes after BQ-123 microinjection, retinal arteriolar diameter had increased by 7.14% +/- 3.3% (P < 0.01), 26.74% +/- 7.63% (P < 0.001), 23.67% +/- 6.4% (P < 0.001), and 16.09% +/- 3.41% (P < 0.001), respectively. Vehicle only injection had no vasoactive effect on physiologic or BRVO retinas. Conclusions. A significant increase in retinal arteriolar diameter was demonstrated after juxta-arteriolar BQ-123 microinjection in healthy and in acute BRVO minipig retinas. The results suggest a role for endothelin-1 in maintaining retinal basal arteriolar tone. Reversing the BRVO-related vasoconstriction by juxta-arteriolar BQ-123 microinjection could bring a new perspective to the management of BRVO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The caspase 8 inhibitor c-FLIP(L) can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIP(L) in the T-cell compartment (c-FLIP(L) Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIP(L) Tg mice. In contrast, activation-induced cell death of T cells in c-FLIP(L) Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIP(L) Tg mice differed from Fas-deficient mice by showing no accumulation of B220(+) CD4(-) CD8(-) T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIP(L) Tg mice. Thus, a major role of c-FLIP(L) in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: MDL 100,240 (pyrido[2,1-a] [2]benzazepine-4-carboxylic acid,7-[[2-(acetylthio)-1-oxo-3-phenylpropyl]amino]-1,2,3,4,6,7,8, 12b-octahydro-6-oxo, [4S-[4alpha,7alpha(R(*)),12bbeta]]-) is a molecule possessing an inhibiting ability on both angiotensin converting enzyme (ACE) and neutral endopeptidase, the enzyme responsible for atrial natriuretic peptide (ANP) degradation. Such a dual mechanism of action presents a potential clinical interest for the treatment of hypertension and congestive heart failure. OBJECTIVES: To evaluate the bioavailability of MDL 100,240 and its accumulation over repeated oral administration, using ACE inhibition as a surrogate for plasma drug level and determining its profile after oral and i.v. administration. METHODS: First, in an open, one-period, single-dose study, the ACE inhibition profile was characterised following a 12.5 mg MDL 100,240 i.v. infusion. Second, in a three-group, parallel, randomised, double-blind study, each group of four subjects received q.d., over 8 days, 2.5, 10 or 20 mg of MDL 100,240 orally. The ACE inhibition profile was determined on day 1 and day 8. Trough plasma ACE was measured on days 2, 3 and 4. The recovery of ACE activity was monitored up to 72 h after the last dose of MDL 100,240. RESULTS: ACE inhibition profile was similar on day 1 and day 8, and trough inhibition remained unchanged after the 8 days of treatment with 10 mg or 20 mg. Following repeated 2.5-mg ingestion, trough inhibition increased from 33% to 44% after the eighth dose. The oral bioavailability of MDL 100,240 was estimated at 85%, not statistically different from 100%. The accumulation ratio at steady state was estimated at 112%. Expressing the accumulation ratio in terms of half-life, a t(1/2) of 0.31 days or 7. 5 h was estimated. CONCLUSION: MDL 100,240 (oral solution) has a good bioavailability, as estimated by ACE inhibition, and no drug accumulation seems to occur over 8 days with the 10-mg and 20-mg doses, but a slight rise in the trough level is observed with the 2. 5-mg dose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isolated limb perfusion (ILP) with melphalan and tumor necrosis factor (TNF)-α is used to treat bulky, locally advanced melanoma and sarcoma. However, TNF toxicity suggests a need for better-tolerated drugs. Cilengitide (EMD 121974), a novel cyclic inhibitor of alpha-V integrins, has both anti-angiogenic and direct anti-tumor effects and is a possible alternative to TNF in ILP. In this study, rats bearing a hind limb soft tissue sarcoma underwent ILP using different combinations of melphalan, TNF and cilengitide in the perfusate. Further groups had intra-peritoneal (i.p.) injections of cilengitide or saline 2 hr before and 3 hr after ILP. A 77% response rate (RR) was seen in animals treated i.p. with cilengitide and perfused with melphalan plus cilengitide. The RR was 85% in animals treated i.p. with cilengitide and ILP using melphalan plus both TNF and cilengitide. Both RRs were significantly greater than those seen with melphalan or cilengitide alone. Histopathology showed that high RRs were accompanied by disruption of tumor vascular endothelium and tumor necrosis. Compared with ILP using melphalan alone, the addition of cilengitide resulted in a three to sevenfold increase in melphalan concentration in tumor but not in muscle in the perfused limb. Supportive in vitro studies indicate that cilengitide both inhibits tumor cell attachment and increases endothelial permeability. Since cilengitide has low toxicity, these data suggest the agent is a good alternative to TNF in the ILP setting.