134 resultados para carnival images
Resumo:
l'imagerie par résonance magnétique (IRMC) est une technologie utilisée depuis les aimées quatre¬-vingts dans le monde de la cardiologie. Cette technique d'imagerie non-invasive permet d'acquérir Ses images du coeur en trois dimensions, dans n'importe quel, plan, sans application de radiation, et en haute résolution. Actuellement, cette technique est devenue un référence dans l'évaluation et 'l'investigation de différentes pathologies cardiaques. La morphologie cardiaque, la fonction des ventricules ainsi que leur contraction, la perfusion tissulaire ainsi que la viabilité tissulaire peuvent être caractérisés en utilisant différentes séquences d'imagerie. Cependant, cette technologie repose sur des principes physiques complexes et la mise en pratique de cette technique se heurte à la difficulté d'évaluer un organe en mouvement permanent. L'IRM cardiaque est donc sujette à différents artefacts qui perturbent l'interprétation des examens et peuvent diminuer la précision diagnostique de cette technique. A notre connaissance, la plupart des images d'IRMC sont analysées et interprétées sans évaluation rigoureuse de la qualité intrinsèque de l'examen. Jusqu'à présent, et à notre connaissance, aucun critère d'évaluation de la qualité des examens d'IRMC n'a été clairement déterminé. L'équipe d'IRMC du CHUV, dirigée par le Prof J. Schwitter, a recensé une liste de 35 critères qualitatifs et 12 critères quantitatifs évaluant la qualité d'un examen d'IRMC et les a introduit dans une grille d'évaluation. L'objet de cette étude est de décrire et de valider la reproductibilité des critères figurant dans cette grille d'évaluation, par l'interprétation simultanée d'examens IRMC par différents observateurs (cardiologues spécialisés en IRM, étudiant en médecine, infirmière spécialisée). Notre étude a permis de démontrer que les critères définis pour l'évaluation des examens d'IRMC sont robustes, et permettent une bonne reproductibilité intra- et inter-observateurs. Cette étude valide ainsi l'utilisation de ces critères de qualité dans le cadre de l'imagerie par résonance magnétique cardiaque. D'autres études sont encore nécessaires afin de déterminer l'impact de la qualité de l'image sur la précision diagnostique de cette technique. Les critères standardisés que nous avons validés seront utilisés pour évaluer la qualité des images dans le cadre d'une étude à échelle européenne relative à l'IRMC : "l'EuroCMR registry". Parmi les autres utilités visées par ces critères de qualité, citons notamment la possibilité d'avoir une référence d'évaluation de la qualité d'examen pour toutes les futures études cliniques utilisant la technologie d'IRMC, de permettre aux centres d'IRMC de quantifier leur niveau de qualité, voire de créer un certificat de standard de qualité pour ces centres, d'évaluer la reproductibilité de l'évaluation des images par différents observateurs d'un même centre, ou encore d'évaluer précisément la qualité des séquences développées à l'avenir dans le monde de l'IRMC.
Resumo:
In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.
Resumo:
This paper presents the segmentation of bilateral parotid glands in the Head and Neck (H&N) CT images using an active contour based atlas registration. We compare segmentation results from three atlas selection strategies: (i) selection of "single-most-similar" atlas for each image to be segmented, (ii) fusion of segmentation results from multiple atlases using STAPLE, and (iii) fusion of segmentation results using majority voting. Among these three approaches, fusion using majority voting provided the best results. Finally, we present a detailed evaluation on a dataset of eight images (provided as a part of H&N auto segmentation challenge conducted in conjunction with MICCAI-2010 conference) using majority voting strategy.
Resumo:
Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.