276 resultados para biology traits
Resumo:
Waddlia chondrophila is an emerging pathogen causing miscarriages in humans and abortions in ruminants. The full genome of this Chlamydia-related bacterium has been recently completed, providing new insights into its biology and evolution. Moreover, new cell biology approaches and the use of novel inhibitors have allowed detailed investigations of its interaction with host cells.
Resumo:
Interpretability and power of genome-wide association studies can be increased by imputing unobserved genotypes, using a reference panel of individuals genotyped at higher marker density. For many markers, genotypes cannot be imputed with complete certainty, and the uncertainty needs to be taken into account when testing for association with a given phenotype. In this paper, we compare currently available methods for testing association between uncertain genotypes and quantitative traits. We show that some previously described methods offer poor control of the false-positive rate (FPR), and that satisfactory performance of these methods is obtained only by using ad hoc filtering rules or by using a harsh transformation of the trait under study. We propose new methods that are based on exact maximum likelihood estimation and use a mixture model to accommodate nonnormal trait distributions when necessary. The new methods adequately control the FPR and also have equal or better power compared to all previously described methods. We provide a fast software implementation of all the methods studied here; our new method requires computation time of less than one computer-day for a typical genome-wide scan, with 2.5 M single nucleotide polymorphisms and 5000 individuals.
Resumo:
The evolution of senescence (the physiological decline of organisms with age) poses an apparent paradox because it represents a failure of natural selection to increase the survival and reproductive performance of organisms. The paradox can be resolved if natural selection becomes less effective with age, because the death of postreproductive individuals should have diminished effects on Darwinian fitness [1, 2]. A substantial body of empirical work is consistent with this prediction for animals, which transmit their genes to progeny via an immortal germline. However, such evidence is still lacking in plants, which lack a germline and whose reproduction is diffuse and modular across the soma. Here, we provide experimental evidence for a genetic basis of senescence in the short-lived perennial plant Silene latifolia. Our pedigree-based analysis revealed a marked increase with age in the additive genetic variance of traits closely associated with fitness. This result thus extends to plants the quantitative genetic support for the evolutionary theory of senescence.
Resumo:
Résumé : Les mécanismes de sélection sexuelle, en particulier la compétition entre mâles (sélection inter-sexuelle) et le choix des femelles (sélection intra-sexuelle), peuvent fortement influencer le succès reproducteur d'un individu, c'est-à-dire son nombre de descendants. On observe ainsi que les mâles dominants et les mâles élaborant des caractères sexuels secondaires marqués ont un succès reproducteur élevé. Toutefois, le succès reproducteur ne suffit pas pour garantir une contribution génétique élevée, parce que la fitness dépend également de la performance des descendants (c'est-à-dire de leur survie et de leur propre succès reproducteur). Si cette performance dépend en partie des gènes paternels, les males ont un avantage certain à signaler leur qualité aux femelles afin d'atteindre des taux de reproduction élevé. Ce mécanisme de signalisation est connu sous le nom de 'good genes hypothesis', toutefois très peu d'études ont clairement démontré le lien entre la qualité génétique des individus et la signalisation. De plus, la performance des descendants peut aussi dépendre des effets génétiques de compatibilité entre mâles et femelles ('compatible genes'). C'est-à-dire que certains allèles paternels n'apporteraient un avantage aux descendants qu'en combinaison avec certains allèles maternels. Nous avons déterminé, durant la période de reproduction, le statut de dominance des mâles pour deux espèces de poissons d'eau douce : la truite (Salmo trotta) et le vairon (Phoxinus phoxinus), puis nous avons évalué la relation entre le succès reproducteur et le statut de dominance et/ou la quantité de signalisation des caractères sexuels secondaires. Nous avons également fécondés artificiellement des oeufs de truites et de corégones (Coregonus palaea), en croisant chaque mâle avec chaque femelle (full-factorial breeding design). Ce type de design autorise la quantification précise des effets génétiques et permet de séparer les effets de 'good genes' et de 'compatible genes'. Cela a été fait sous différentes intensités de stress bactérien, ainsi que dans des conditions naturelles, et nous avons pu ainsi tester si certains indicateurs de qualité génétique des mâles ('good genes') étaient liés a) à la dominance et/ou b) à l'expression des caractères sexuels secondaires des mâles comme l'intensité mélanique ou la taille des tubercules sexuels. En outre, nous cherchons à savoir si la survie des descendants est liée à certaines combinaison des gènes du complexe d'histocompatibilité majeur (MHC) et/ou à la parenté génétique des parents, les deux traits étant soupçonnés d'avoir des influences génétique de compatibilité (`compatible genes') à la performance des descendants. Nous avons constaté que la dominance des mâles est directement liée à la taille et au poids des mâles (truites, vairons), mais également aux caractères sexuels secondaires (tubercules). De plus, les mâles vairons dominant ont eu un succès de fécondation plus élevés que les mâles subordonnés. Nous montrons que les truites et corégones mâles diffèrent dans leur qualité génétique, qui a été mesurée avéc la survie embryonnaire, le temps avant l'éclosion et enfin la croissance juvénile. Contrairement aux prédictions, la dominance (ou les traits indicatifs de dominance) n'était liée à la qualité génétique, dans aucun des traitements, et ne fonctionne donc pas comme indicateur de qualité. Par contre, la qualité génétique était liée aux caractères sexuels secondaires, particulièrement par la teinte mélanique chez les truites. Les embryons de truites issus de pères sombres survivaient mieux que ceux issus de pères clairs dans des environnements difficiles, de plus leur croissance était plus élevée lors de leur première année dans des conditions naturelles. La taille des juvéniles lors de leur première année est un trait important lié au succès dans la compétition pour des ressources telles qu'abri ou nourriture. De plus, les femelles truites peuvent augmenter la survie de leurs descendants en choisissant des mâles selon leur type de MHC ou selon leur degré de parenté. En outre, chez les corégones, la morphologie des tubercules sexuels ne semble pas signaler la qualité génétique. Nous avons également remarqué que l'exposition à des pathogènes non-létaux pouvait influencer la performance des alevins à court et long terme, probablement en affaiblissant leur système immunitaire. Cette thèse montre que les mâles diffèrent dans leur qualité génétique et que différents mécanismes de sélection inter- ou intra-sexuelle (par exemple la préférence pour des mâles sombres, pour des génotypes MHC ou pour des couples avec degré de parenté basse) pouvait avoir un effet positif sur la qualité des descendants, bien que cet effet génétique pouvait changer au cours du temps et entre différents environnements. Contrairement à nos attentes, le résultat de la compétition intra-sexuelle (la hiérarchie de dominance entre mâles) n'était pas lié à la qualité génétique individuelle ('good genes'). Dans ce sens, ce travail permet également de contribuer à l'explication du fait que la sélection sexuelle, de par sa forte sélection directionnelle, ne conduit pas à la diminution de la variance génétique, mais plutôt à la maintenance du polymorphisme génétique. Summary : Sexual selection mechanisms, especially male-male competition (inteasexual selection) and female mate choice (inteasexual selection), can strongly influence individual mating success, often resulting in dominant males and males with elaborate secondary sexual characters having higher fertilisation success. However, siring a high number of offspring alone does not guarantee high individual fitness, as fitness does also strongly depend on offspring performance (i.e. survival, fecundity). If this superiority in offspring performance depends on paternally inherited genes, the fathers are expected to signal this potential indirect benefit to females in order to attain high mating rates. This mechanism is also known as the 'good genes' hypothesis of sexual selection but until now most studies failed to conclusively show the relation of an individual genetic quality and its potential signalling traits. Further, offspring performance could also depend on compatible gene effects. These are alleles that increase offspring performance only in combination with other specific alleles. We first determined male dominance status from intrasexual competition during mating season for brown trout (Salmo trutta) and European minnows (Phoxinus phoxinus). For minnows we additionally checked if dominance and/or secondary sexual traits were linked to fertilisation success. Further, we artificially fertilised brown trout and alpine whitefish (Coregonus palaea) eggs, following full factorial breeding designs, enabling to properly measure `good gene' and `compatible gene' effects on offspring performance. This was done under different intensities of natural stressors, as well as under natural conditions. This procedure allowed us to test if the obtained male genetic quality measures (good genes effects) were indicated by a) dominance or lay traits linked to dominance and/or by b) secondary sexual characteristics such as melanin-based male skin darkness or breeding tubercles. Further, we investigated if offspring survival was linked to the MHC (major histocompatibility complex) gene combinations and/or to the parental genetic relatedness, as both traits were shown to have 'compatible gene' effects that may influence offspring performance. We found that male dominance in intrasexual competition was positively linked to body size, body weight (brown trout, minnows) but also to elaborate secondary sexual characteristics (breeding tubercles in minnows). Further, dominant minnow males did have an increased fertilisation success compared to subordinate ones. We show that brown trout and whitefish males do usually differ in their genetic quality, which was measured as embryo survival, hatching timing and finally as juvenile growth. Contrary to prediction male dominance or dominance indicating traits do not function as a quality signal as they were not linked to genetic quality. This result was constant when measuring genetic quality under different levels of natural stressors and under natural conditions (brown trout). On the other hand genetic quality seemed to be indicated by secondary sexual characteristics, specifically by melanin-based skin darkness in brown trout as brown trout embryos sired by darker fathers had increased survival rates when raised under harsh conditions and. they grew larger as juveniles after one year of growth in a natural stream, which is an important trait influencing success of juveniles in competition for hidings, food and other resources. Furthermore, brown trout females may increase the survival of their embryos when choosing males according to their MHC genotypes or to the general genetic relatedness between themselves and their potential mates. In whitefish on the other hand breeding tubercle morphology did not seem to signal genetic quality. Eventually, we saw that anon-lethal exposure to pathogens might influence short term and long term offspring performance probably by weakening an exposed individual's immune system. This thesis shows that males usually differ in their genetic quality and that different inter- or intrasexual selection mechanisms (e.g. mate selection favouring dark males, preference for MHC genotype combinations or for unrelated mates) may have strong positive effects on genetically dependent offspring performance but that such genetìc effects can change over time and environments. In contrast to our a priori expectations, the outcome of intrasexual selection, namely male dominance hierarchies, with dominant males often having high fertilisation success, was not linked to individual genetic quality (`good genes'). In this sense the present thesis may also be a helpful contribution to understand why sexual selection does not lead to rapid loss of genetic variation by strong directional selection but could even lead to the maintenance of genetic variation in natural populations.
Resumo:
The amount of nitrogen required to complete an insect's life cycle may vary greatly among species that have evolved distinct life history traits. Myrmecophilous caterpillars in the Lycaenidae family produce nitrogen-rich exudates from their dorsal glands to attract ants for protection, and this phenomenon has been postulated to shape the caterpillar's host-plant choice. Accordingly, it was postulated that evolution towards myrmecophily in Lycaenidae is correlated with the utilization of nitrogen-rich host plants. Although our results were consistent with the evolutionary shifts towards high-nutrient host plants serving as exaptation for the evolution of myrmecophily in lycaenids, the selection of nitrogen-rich host plants was not confined to lycaenids. Butterfly species in the nonmyrmecophilous family Pieridae also preferred nitrogen-rich host plants. Thus, we conclude that nitrogen is an overall important component in the caterpillar diet, independent of the level of myrmecophily, as nitrogen can enhance the overall insect fitness and survival. However, when nitrogen can be obtained through alternative means, as in socially parasitic lycaenid species feeding on ant brood, the selective pressure for maintaining the use of nutrient-rich host plants is relaxed, enabling the colonization of nitrogen-poor host plants.
Resumo:
Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.
Resumo:
To test hypotheses about the universality of personality traits, college students in 50 cultures identified an adult or college-aged man or woman whom they knew well and rated the 11,985 targets using the 3rd-person version of the Revised NEO Personality Inventory. Factor analyses within cultures showed that the normative American self-report structure was clearly replicated in most cultures and was recognizable in all. Sex differences replicated earlier self-report results, with the most pronounced differences in Western cultures. Cross-sectional age differences for 3 factors followed the pattern identified in self-reports, with moderate rates of change during college age and slower changes after age 40. With a few exceptions, these data support the hypothesis that features of personality traits are common to all human groups.
Resumo:
Personality profiles of cultures can be operationalized as the mean trait levels of culture members. College students from 51 cultures rated an individual from their country whom they knew well (N 12,156). Aggregate scores on Revised NEO Personality Inventory (NEO-PI-R) scales generalized across age and sex groups, approximated the individual-level 5-factor model, and correlated with aggregate self-report personality scores and other culture-level variables. Results were not attributable to national differences in economic development or to acquiescence. Geographical differences in scale variances and mean levels were replicated, with Europeans and Americans generally scoring higher in Extraversion than Asians and Africans. Findings support the rough scalar equivalence of NEO-PI-R factors and facets across cultures and suggest that aggregate personality profiles provide insight into cultural differences.
Resumo:
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past approximately 63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome-derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function.
Resumo:
AIM: To investigate the relationships between six classes of non-medical prescription drug use (NMPDU) and five personality traits. METHODS: Representative baseline data on 5777 Swiss men around 20 years old were taken from the Cohort Study on Substance Use Risk Factors. NMPDU of opioid analgesics, sedatives/sleeping pills, anxiolytics, antidepressants, beta-blockers and stimulants over the previous 12 months was measured. Personality was assessed using the Brief Sensation Seeking Scale; attention deficit-hyperactivity (ADH) using the Adult Attention-Deficit-Hyperactivity Disorder Self-Report Scale; and aggression/hostility, anxiety/neuroticism and sociability using the Zuckerman-Kuhlmann Personality Questionnaire. Logistic regression models for each personality trait were fitted, as were seven multiple logistic regression models predicting each NMPDU adjusting for all personality traits and covariates. RESULTS: Around 10.7% of participants reported NMPDU in the last 12 months, with opioid analgesics most prevalent (6.7%), then sedatives/sleeping pills (3.0%), anxiolytics (2.7%), and stimulants (1.9%). Sensation seeking (SS), ADH, aggression/hostility, and anxiety/neuroticism (but not sociability) were significantly positively associated with at least one drug class (OR varied between 1.24, 95%CI: 1.04-1.48 and 1.86, 95%CI: 1.47-2.35). Aggression/hostility, anxiety/neuroticism and ADH were significantly and positively related to almost all NMPDU. Sociability was inversely related to NMPDU of sedatives/sleeping pills and anxiolytics (OR, 0.70; 95%CI: 0.51-0.96 and OR, 0.64; 95%CI: 0.46-0.90, respectively). SS was related only to stimulant use (OR, 1.74; 95%CI: 1.14-2.65). CONCLUSION: People with higher scores for ADH, aggression/hostility and anxiety/neuroticism are at higher risk of NMPDU. Sociability appeared to protect from NMPDU of sedatives/sleeping pills and anxiolytics.
Resumo:
Les changements environnementaux, tels la température ou les maladies infectieuses, peuvent influencer l'évolution en induisant de la sélection, mais ceci à la seule condition qu'il y ait assez de diversité génétique pour les traits en question ou pour l'expression plastique de ces traits. Au cours cette thèse, nous avons étudié l'effet de potentielles pressions environnementales sur différents phénotypes de trois représentants des sous familles des salmonidés: l'ombre commun (Thymallus thymallus; Thymallinae), la truite de rivière {Salmo trutta; Salmoninae) et le corégone Coregonus palaea (Coregoninae). Les salmonidés se prêtent particulièrement bien à ce type d'expériences car étant hautement sensibles aux conditions environnementales, ils montrent une large variabilité dans leurs traits morphologiques, comportementaux ainsi que d'histoire de vie, tout en bénéficiant d'un large intérêt général. Nous avons testé si le sexe de l'ombre commun pouvait être modifié par la température, ce qui pourrait ainsi expliquer un changement abrupte de sex ratio observé dans l'une des plus grandes populations de Suisse. Nous n'avons trouvé aucun indice permettant de conclure que la température puisse induire ce changement chez l'ombre commun ou chez la truite de rivière. De plus nous avons étudié la plasticité de développement ainsi que d'éclosion, et avons observé des différences entre familles ainsi qu'entre populations. Alors que ces différences comportementales entre populations suggéraient une adaptation aux conditions environnementales locales, cette prédiction n'a pas été confirmée par une expérience de transplantation réciproque d'embryons entre cinq rivières de la même région. Cette étude a montré que les embryons ne survivaient pas mieux dans leur rivière d'origine, indiquant donc une absence d'adaptation locale. Nous avons aussi montré que la mortalité embryonnaire était influencée autant par des "bons gènes" que par des "gènes compatibles", que la qualité des mâles pouvait être signalée par leur coloration, et que le fait d'élever des poissons dans une pisciculture pouvait aboutir a des relations contre-intuitives entre la coloration des mâles et la qualité de leur jeunes. Nos résultats contribuent ainsi à une meilleure compréhension de l'effet de diverses pressions environnementales sur la morphologie, le comportement ou les traits d'histoire de vie chez les salmonidés. - Environmental changes, such as changes in temperatures or infection levels, can induce selection and drive evolution if there is sufficient genetic variation for the traits or the plasticity in trait expression. In this thesis, we investigated the influence of potential environmental stressors on various phenotypes in representatives of the three salmonid subfamilies: the European grayling (Thymallus thymallus; Thymallinae), the brown trout (,Salmo trutta; Salmoninae), and the whitefish Coregonus palaea (Coregoninae). Salmonids are ideal study species, as they seem sensitive to changing environmental conditions, show considerable variability in morphological, behavioral, and life history traits, and are of broad public interest. We investigated whether temperature-induced sex reversal could explain the sex-ratio distortion found in one of Switzerland's largest grayling populations. We found no evidence of temperature-induced sex reversal in either graylings or brown trout. We also examined plasticity in embryo development and the timing of hatching. We found variation at the level of family and population. Although behavioral differences between populations suggested adaptation to local environmental conditions, no indications of local adaptation could be found in reciprocal transplant experiments carried out over five rivers in the same region. We also demonstrate that embryo development and viability is influenced by 'good genes' and 'compatible genes', that the genetic quality of sires can be signaled by their grey coloration, and that raising larvae in a hatchery environment can produce counter-intuitive relationships between male phenotypes and offspring viability. Our results contribute to the understanding of how changing environmental conditions affect the phenotypes and the heritability of early life-history traits in salmonids.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
The maintenance of phenotypic variation is a central question in evolutionary biology. A commonly suggested mechanism is that of local adaptation, whereby different phenotypes are adapted to alternative environmental conditions. A recent study in the European barn owl (Tyto alba) has shown that natural selection maintains a strong clinal variation in reddish pheomelanin-based coloration. Studies in the region where phenotypic variation in this owl is the highest in Europe have further demonstrated that dark-reddish and pale-reddish owls exploit open and wooded habitats, predate voles and wood mice, and are long-tailed and short-tailed, respectively. However, it remains unclear as to whether these traits evolved as a consequence of allopatric evolution of dark colour in northern Europe and white colour in southern Europe, during which owls could have also evolved different morphologies and foraging behaviour. This scenario implies that covariation between coloration and foraging behaviour could be a specificity of the European continent, which is not found in other worldwide-distributed populations. To investigate this issue we studied a barn owl population in the Middle East. Our results show that, as in Central Europe, dark-reddish female owls breed more often in the open landscape than their pale-reddish female conspecifics, their offspring are fed with more voles than Muridae, and they are longer-winged and longer-tailed. These findings indicate that in the barn owl the association in females between pheomelanin-based coloration and foraging behaviour and morphology is not restricted to the European continent but may well evolve in sympatry in many barn owl populations worldwide.
Resumo:
Divergence of protein sequences and gene expression patterns are two fundamental mechanisms that generate organismal diversity. Here, we have used genome and transcriptome data from eight mammals and one bird to study the positive correlation of these two processes throughout mammalian evolution. We demonstrate that the correlation is stable over time and most pronounced in neural tissues, which indicates that it is the result of strong negative selection. The correlation is not driven by genes with specific functions and may instead best be viewed as an evolutionary default state, which can nevertheless be evaded by certain gene types. In particular, genes with developmental and neural functions are skewed toward changes in gene expression, consistent with selection against pleiotropic effects associated with changes in protein sequences. Surprisingly, we find that the correlation between expression divergence and protein divergence is not explained by between-gene variation in expression level, tissue specificity, protein connectivity, or other investigated gene characteristics, suggesting that it arises independently of these gene traits. The selective constraints on protein sequences and gene expression patterns also fluctuate in a coordinate manner across phylogenetic branches: We find that gene-specific changes in the rate of protein evolution in a specific mammalian lineage tend to be accompanied by similar changes in the rate of expression evolution. Taken together, our findings highlight many new aspects of the correlation between protein divergence and expression divergence, and attest to its role as a fundamental property of mammalian genome evolution.