141 resultados para arbuscular mycorrhizal (AM) fungi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can influence plant diversity and ecosystem productivity. However, little is known about the effects of AMF and different AMF taxa on other important community properties such as nutrient acquisition, plant survival and soil structure. We established experimental grassland microcosms and tested the impact of AMF and of different AMF taxa on a number of grassland characteristics. We also tested whether plant species benefited from the same or different AMF taxa in subsequent growing seasons. AMF enhanced phosphorus acquisition, soil aggregation and survival of several plant species, but AMF did not increase total plant productivity. Moreover, AMF increased nitrogen acquisition by some plant species, but AMF had no effect on total N uptake by the plant community. Plant growth responses to AMF were temporally variable and some plant species obtained the highest biomass with different AMF in different years. Hence the results indicate that it may be beneficial for a plant to be colonized by different AMF taxa in different seasons. This study shows that AMF play a key role in grassland by improving plant nutrition and soil structure, and by regulating the make-up of the plant community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arbuscular mycorrhizal symbioses occur between fungi and the majority of plant species. They are important for plant nutrition, plant growth, protection from pathogens, plant diversity, nutrient cycling, and ecosystem processes. A key goal in research is to understand the molecular basis of the establishment, regulation, and functioning of the symbiosis. However, lack of knowledge on the genetics of the fungal side of this association has hindered progress. Here, we show how several key, recently discovered processes concerning the genetics of arbuscular mycorrhizal fungi could be essential for ultimately understanding the molecular genetics of this important symbiosis with plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. RESULTS: In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. CONCLUSION: On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different arbuscular mycorrhizal (AMF) fungal taxa have a differential effect on the growth of co-existing plant species. This means that in order to fully understand the role of these fungi in plant communities, information is needed on whether the symbiosis is specific. In this chapter, I briefly review the ecological consequences of specificity versus non-specificity in the arbuscular mycorrhizal symbiosis on plant ecology. Both from a theoretical approach, and based on observations, there has been an underlying assumption that no specificity exists in the arbuscular mycorrhizal symbiosis. I consider why these assumptions have been made. Direct evidence for or against specificity in the symbiosis is scant and the reason is mainly due to the difficulty in describing AMF community structure in natural communities (see Clapp et al., Chap.8, this Vol.). Here, I take an evolutionary, as well as an ecological, approach to look at the evidence that predicts that evolution of specificity in the arbuscular mycorrhizal symbiosis could occur. I then consider alternative hypotheses and evidence that could explain why the evolution of specificity might not occur. These hypotheses are based on the growth habit, reproductive strategies and foraging behaviour of AMF and on new findings concerning ANF genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Arbuscular mycorrhizal fungi (AMF) form symbiosis with roots of approximately 80% of known land plants. These fungi play a key role in the ecology and adaptation of plants to various ecosystems.by increasing the plant resources for various nutrients. Despite their important ecological role, we still have poor understanding of their genetic structure and their molecular evolution. The work presented in this thesis aims to isolate and analyse AMF genes with various molecular techniques, in order to obtain new insights about their genetics, phylogeny and molecular evolution. Some AMF genes were shown through phylogenetic analyses to be more related with plants or mycoparasites than with other fungal organisms. These results led to the prediction that lateral gene transfers (LGT) occurred between AMF and plants during their long-term co-évolution. By phylogenetic and molecular analyses, in the chapter 2 I demonstrate that the hypothesis of LGT is most likely a consequence of analyses carried out on contaminant non AMF-DNA. In addition, various features characteristic of AMF genes have been determined, allowing researchers to scan their own sequence databases for potential non-AMF contaminants. Phylogenetic relationships of AMF with other fungi has been mostly analysed using molecular markers of ribosomal origin. In chapter 2 I successfully isolated gene encoding α- and ß-tubulins from several AMF genera. Consequently, phylogenetic analyses showed that AMF possess an unexpected relationship with ancestral aquatic fungi (chytrids). These results are consistent with the prediction stating that AMF may have played an important role in the colonisation of land by green plants through the establishment of a symbiosis and after the divergence of AMF from aquatic ancestors. In Chapter 4 I tried to isolate the entire AMF gene family encoding P-Type II ATPases, in order to determine their molecular evolution with the fungal kingdom. These genes were further analysed to detect the level of sequence polymorphism that is present within an AMF population. The results obtained show that mutational events previously thought as occurring only among divergent evolutionary lineages (gene duplications, indel mutations in coding regions) can occur within a single population of AMF. These results have far reaching consequences for our understanding of the genetics and ecology of AMF. Résumé Les champignons endomycorrhiziens arbusculaires (CEA) forment une symbiose racinaire avec environ 80% des plantes vasculaires connues. Ces champignons possèdent un rôle important dans l'écologie et l'adaptation des plantes au sein de différents écosystèmes en .augmentant leurs ressources en nutriments. Le travail présenté dans cette thèse se propose d'isoler et d'analyser certains gènes de CEA avec différentes techniques moléculaires à fin d'obtenir de pÌus amples informations concernant l'évolution moléculaire, la phylogénie et leur diversité génétique à diverses échelles taxonomiques. Certaines analyses phylogénétiques des CEA ont conduit à l'hypothèse que des transferts horizontaux de gènes (THG) ont pu avoir lieu durant leur longue co-évolution avec les plantes vasculaires. Dans le chapitre 2 de cette thèse nous démontrons par analyses moléculaire et phylogénétique que l'hypothèse de THG est une conséquence de contaminations à partir d'ADN de plante ou d'autres micro-organismes. De plus, de nombreuses caractéristiques moléculaires de CEA ont pu être déterminées, permettant la mise en place d'un plan à suivre lors de l'analyse de gènes de CEA dans les études futures. Les relations évolutives des. CEA avec d'autres champignons ont été analysées majoritairement à l'aide de marqueurs moléculaires d'origine ribosomiale. Dans les chapitres 2 et 3 j'ai isolé des gènes codant pour l'a- et la ß-tubuline chez différents genres, de CEA. Les analyses phylogénétiques ont démontré une parenté entre les CEA et des champignons aquatiques ancestraux (chytrides). Ces résultats sont en accord avec l'hypothèse selon laquelle les CEA ont probablement joué un rôle primordial dans l'établissement des plantes sur terre à travers une symbiose et suite à leur évolution à partir d'ancêtres vivant dans des milieux aquatiques: Dans le chapitre 4 j'ai isolé une entière famille de gènes chez les CEA codant des ATPases de la membrane plasmique, et étudié leur évolution moléculaire dans le règne des champignons. Ces mêmes gènes ont été analysés ultérieurement à fin de déterminer le degré de polymorphisme de séquence qui peut être présent au sein d'une population de CEA. Les résultats obtenus montrent que des évènements mutationnels considérés comme apparaissant exclusivement dans des lignées évolutives très divergentes (duplication de gènes, insertions/délétions dans des régions transcrites du génome) ont lieu sein d'une même population de CEA. Cette découverte a un impact important sur nos connaissances concernant la génétique des populations des CEA et leur écologie.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil palm is a significant and developing crop in many developing countries. The introduction of oil palm puts pressure on natural resources because it is often planted in cleared-cut land that previously supported other crops or was forested. This has led to environmental concerns which require attention. Hence it is important that new plantations are managed in a sustainable way to reduce the impact of oil palm cultivation on ecosystems whilst maximising yield and productivity to farmers. The application of arbuscular mycorrhizal fungi (AMF) technology is one option that can benefit both agronomic plant health and ecosystems. AMF have the potential to increase conventional agricultural productivity and are crucial for the sustainable functioning of agricultural ecosystems. This paper provides an insight into how AMF application might benefit oil palm cultivation through more sustainable management and the practical use of AMF for oil palm plantations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) were studied in differently tilled soils from a long-term field experiment in Switzerland. Diversity and structure of AMF communities were surveyed either directly on spores isolated from the field soil or on spores isolated from trap cultures, planted with different host plants. Single-spore cultures were established from the AMF spores obtained from trap cultures. Identification of the AMF was made by observation of spore morphology and confirmed by sequencing of ITS rDNA. At least 17 recognised AMF species were identified in samples from field and/or trap cultures, belonging to five genera of AMF--Glomus, Gigaspora, Scutellospora, Acaulospora, and Entrophospora. Tillage had a significant influence on the sporulation of some species and non- Glomus AMF tended to be more abundant in the no-tilled soil. The community structure of AMF in the field soil was significantly affected by tillage treatment. However, no significant differences in AMF diversity were detected among different soil tillage treatments. AMF community composition in trap cultures was affected much more by the species of the trap plant than by the original tillage treatment of the field soil. The use of trap cultures for fungal diversity estimation in comparison with direct observation of field samples is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ancient asexuals have been considered to be a contradiction of the basic tenets of evolutionary theory. Barred from rearranging genetic variation by recombination, their reduced number of gene arrangements is thought to hamper their response to changing environments. For the same reason, it should be difficult for them to avoid the build-up of deleterious mutations. Several groups of taxonomically diverse organisms are thought to be ancient asexuals, although clear evidence for or against the existence of recombination events is scarce. Several methods have recently been developed for predicting recombination events by analyzing aligned sequences of a given region of DNA that all originate from one species. The methods are based on phylogenetic, substitution, and compatibility analyses. Here we present the results of analyses of sequence data from different loci studied in several groups of evolutionarily distant species that are considered to be ancient asexuals, using seven different types of analysis. The groups of organisms were the arbuscular mycorrhizal fungi (Glomales), Darwinula stevensoni (Darwinuloidea crustacean ostracods) and the bdelloid rotifers (Bdelloidea), which are thought to have been asexual for the last 400, 25-100, and 35-40 Myr, respectively. The seven different analytical methods evaluated the evolutionary relationships among haplotypes, and these methods had previously been shown to be reliable for predicting the occurrence of recombination events. Despite the different degree of genetic variation among the different groups of organisms, at least some evidence for recombination was found in all species groups. In particular, predictions of recombination events in the arbuscular mycorrhizal fungi were frequent. Predictions of recombination were also found for sequence data that have previously been used to infer the absence of recombination in bdelloid rotifers. Although our results have to be taken with some caution because they could signal very ancient recombination events or possibly other genetic variation of nonrecombinant origin, they suggest that some cryptic recombination events may exist in these organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work on the interaction of aerial plant parts with pathogens has identified the signaling molecules jasmonic acid (JA) and salicylic acid (SA) as important players in induced defense of the plant against invading organisms. Much less is known about the role of JA and SA signaling in root infection. Recent progress has been made in research on plant interactions with biotrophic mutualists and parasites that exclusively associate with roots, namely arbuscular mycorrhizal and rhizobial symbioses on one hand and nematode and parasitic plant interactions on the other hand. Here, we review these recent advances relating JA and SA signaling to specific stages of root colonization and discuss how both signaling molecules contribute to a balance between compatibility and defense in mutualistic as well as parasitic biotroph-root interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants continually encounter many microorganisms. Some are good, but many are bad. Two studies show how beneficial fungi tell the plant to let them in and how the fungus avoids setting off the plant's defense reaction.