125 resultados para annular pancreas
Resumo:
Summary : During vertebrate embryonic development, the endoderm gives rise to the digestive tract and associated organs such as thyroid, lung, liver and pancreas. Earlier studies have shown that extracellular signals coming from the lateral plate mesoderm pattern the endoderm along the antero-posterior axis specifying different organ primordia. An early sign of patterning is the expression of organ-specific genes in restricted endoderm domains. In this study, we focused on the role of the retinoic acid (RA) signaling pathway in the regionalization of the future gut tube along the main body axis. We show that the RA-synthesizing enzyme Raldh2 is expressed in mesoderm close to the endoderm during gastrulation and during somitogenesis. During the same period, all retinoic acid receptors (RARs), which directly activate gene transcription, are expressed in endoderm suggesting that endoderm can be responsive to RA. Activation or inhibition of RA signaling was achieved by adding RA or RAR inhibitors tither on beads or in the medium to cultured chick embryos. Branchial arch (BA) endoderm markers were shifted posteriorly upon depletion of RA at gastrulation, but were not shifted after this stage. Conversely, exposure to exogenous RA repressed the most-anterior BA markers and shifted more posterior BA markers anteriorly. This suggests that graded levels of RA activity in the foregut define gene boundaries and expression levels. The posterior foregut and midget markers Pdxl and CdxA require RA for their expression, but elevated RA does not shift their expression domain along the antero-posterior axis. In addition, we investigated if RA signaling pathway interacts with other signaling pathways to pattern the endoderm. Although both RA and FGFs block anterior foregut marker expression, our experiments suggest that FGF signaling does not depend on RA in anterior endoderm. To validate our chick data in mammalians and evaluate whether RA acts directly on endoderm, we have further generated a conditional loss-of-function system in the mouse, which is still under examination.
Resumo:
During the last 2 years, several novel genes that encode glucose transporter-like proteins have been identified and characterized. Because of their sequence similarity with GLUT1, these genes appear to belong to the family of solute carriers 2A (SLC2A, protein symbol GLUT). Sequence comparisons of all 13 family members allow the definition of characteristic sugar/polyol transporter signatures: (1) the presence of 12 membrane-spanning helices, (2) seven conserved glycine residues in the helices, (3) several basic and acidic residues at the intracellular surface of the proteins, (4) two conserved tryptophan residues, and (5) two conserved tyrosine residues. On the basis of sequence similarities and characteristic elements, the extended GLUT family can be divided into three subfamilies, namely class I (the previously known glucose transporters GLUT1-4), class II (the previously known fructose transporter GLUT5, the GLUT7, GLUT9 and GLUT11), and class III (GLUT6, 8, 10, 12, and the myo-inositol transporter HMIT1). Functional characteristics have been reported for some of the novel GLUTs. Like GLUT1-4, they exhibit a tissue/cell-specific expression (GLUT6, leukocytes, brain; GLUT8, testis, blastocysts, brain, muscle, adipocytes; GLUT9, liver, kidney; GLUT10, liver, pancreas; GLUT11, heart, skeletal muscle). GLUT6 and GLUT8 appear to be regulated by sub-cellular redistribution, because they are targeted to intra-cellular compartments by dileucine motifs in a dynamin dependent manner. Sugar transport has been reported for GLUT6, 8, and 11; HMIT1 has been shown to be a H+/myo-inositol co-transporter. Thus, the members of the extended GLUT family exhibit a surprisingly diverse substrate specificity, and the definition of sequence elements determining this substrate specificity will require a full functional characterization of all members.
Resumo:
Peptide hormones within the secretin-glucagon family are expressed in endocrine cells of the pancreas and gastrointestinal epithelium and in specialized neurons in the brain, and subserve multiple biological functions, including regulation of growth, nutrient intake, and transit within the gut, and digestion, energy absorption, and energy assimilation. Glucagon, glucagon-like peptide-1, glucagon-like peptide-2, glucose-dependent insulinotropic peptide, growth hormone-releasing hormone and secretin are structurally related peptides that exert their actions through unique members of a structurally related G protein-coupled receptor class 2 family. This review discusses advances in our understanding of how these peptides exert their biological activities, with a focus on the biological actions and structural features of the cognate receptors. The receptors have been named after their parent and only physiologically relevant ligand, in line with the recommendations of the International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR).
Resumo:
Diabetes and the related metabolic syndrome are multi system disorders that result from improper interactions between various cell types. Even though the underlying mechanism remains to be fully understood, it is most likely that both the long and the short distance range cell interactions, which normally ensure the physiologic functioning of the pancreas, and its relationships with the insulin-targeted organs, are altered. This review focuses on the short-range type of interactions that depend on the contact between adjacent cells and, specifically, on the interactions that are dependent on connexins. The widespread distribution of these membrane proteins, their multiple modes of action, and their interactions with conditions/molecules associated to both the pathogenesis and the treatment of the 2 main forms of diabetes and the metabolic syndrome, make connexins an essential part of the chain of events that leads to metabolic diseases. Here, we review the present state of knowledge about the molecular and cell biology of the connexin genes and proteins, their general mechanisms of action, the roles specific connexin species play in the endocrine pancreas and the major insulin-targeted organs, under physiological and patho-physiological conditions.
Resumo:
The role of lipase in the regulation of upper gastrointestinal function is poorly understood. We studied the effect of orlistat, a new, potent, and highly specific lipase inhibitor, on gastric emptying, cholecystokinin (CCK) release, and pancreaticobiliary secretion. Three groups of studies were performed in nine healthy volunteers, using the double-indicator technique with a triple-lumen duodenal tube, polyethylene glycol 4000 as a duodenal perfusion marker, and 99mTc-diethylenetriamine pentaacetic acid as a meal marker. Gastric emptying, pancreaticobiliary output, and postprandial plasma CCK levels were measured after ingestion of the following isocaloric 500-ml liquid meals with or without 200 mg orlistat: 1) a pure fat meal (10% Intralipid), 2) a meal containing free fatty acids, or 3) an albumin-glucose meal. All experiments were performed in a randomized, placebo-controlled, crossover design. Orlistat markedly inhibited lipase activity in all three experiments. Orlistat given with the fat meal reduced CCK release and output of lipase, trypsin, and bilirubin and accelerated the rate of gastric emptying (P < 0.05). After ingestion of the free fatty acid or albumin-glucose meal, orlistat had no significant effect on any of these parameters. We conclude that lipase plays an important, nutrient-specific role in the regulation of gastric emptying and pancreaticobiliary secretion after ingestion of fatty meals in humans.
Resumo:
A new generation of microcapsules based on the use of oligomers which participate in polyelectrolyte complexation reactions has been developed. These freeze-thaw stable capsules have been applied as a bioartificial pancreas and have resulted in normoglycemia for periods of six months in concordant xenotransplantations. The new chemistry permits the control of permeability and mechanical properties over a wide range and can be adapted both to microcapsule and hollow fiber geometries rendering it a robust tool for encapsulation in general. Methods, and metrics, for the characterization of the mechanical properties and permeability of microcapsules are presented.
Resumo:
RESUME Le diabète de type 1 se définit comme un désordre métabolique d'origine auto-immune qui aboutit à la destruction progressive et sélective de la cellule ß-pancréatique sécrétrice d'insuline. Cette maladie représente 10 % des cas de diabète enregistrés dans la population mondiale, et touche les jeunes de moins de 20 ans. Le traitement médical par insulinothérapie corrige le manque d'hormone mais ne prévient pas les nombreuses complications telles que les atteintes cardiaques, neurologiques, rénales, rétiniennes, et les amputations que la maladie provoque. Le remplacement de la cellule ß par transplantation d'îlots de Langerhans est une alternative prometteuse au traitement médical du diabète de type 1. Cependant la greffe d'îlots est encore un traitement expérimental et ne permet pas un contrôle efficace de la glycémie au long terme chez les patients transplantés, et les raisons de cet échec restent mal comprises. L'obstacle immédiat qui se pose est la purification d'un nombre suffisant d'îlots viables et la perte massive de ces îlots dans les premières heures suite à la greffe. Cette tendance presque systématique de la perte fonctionnelle du greffon immédiatement après la transplantation est connue sous le terme de « primary graft non-function » (PNF). En effet, la procédure d'isolement des îlots provoque la destruction des composantes cellulaires et non cellulaires du tissu pancréatique qui jouent un rôle déterminant dans le processus de survie de l'îlot. De plus, la transplantation elle-même expose les cellules à différents stress, notamment le stress par les cytokines inflammatoires qui encourage la mort cellulaire par apoptose et provoque par la suite le rejet de la greffe. L'ensemble de ces mécanismes aboutit a une perte de la masse d'îlot estimée a plus de 60%. Dans ce contexte, nous nous sommes intéressés à définir les voies majeures de stress qui régissent cette perte massive d'îlot par apoptose lors du processus d'isolement et suite à l'exposition immédiate aux cytokines. L'ensemble des résultats obtenus indique que plusieurs voies de signalisation intracellulaire sont recrutées qui s'activent de manière maximale très tôt lors des premières phases de l'isolement. La mise en culture des îlots deux jours permet aux voies activées de revenir aux taux de base. De ce fait nous proposons une stratégie dite de protection qui doit être 1) initiée aussitôt que possible lors de l'isolement des îlots pancréatiques, 2) devrait probablement bloquer l'activation de ces différentes voies de stress mis en évidence lors de notre étude et 3) devrait inclure la mise en culture des îlots purifiés deux jours après l'isolement et avant la transplantation. RESUME LARGE PUBLIC Le diabète est une maladie qui entraîne un taux anormalement élevé de sucre (glucose) dans le sang du à une insuffisance du pancréas endocrine à produire de l'insuline, une hormone qui régule la glycémie (taux de glucose dans le sang). On distingue deux types majeurs de diabètes; le diabète de type 1 ou juvénile ou encore appelé diabète maigre qui se manifeste souvent pendant l'enfance et qui se traduit par une déficience absolue en insuline. Le diabète de type 2 ou diabète gras est le plus fréquent, et touche les sujets de plus de 40 ans qui souffrent d'obésité et qui se traduit par une dysfonction de la cellule ß avec une incapacité à réguler la glycémie malgré la production d'insuline. Dans le diabète de type 1, la destruction de la cellule ß est programmée (apoptose) et est majoritairement provoquée par des médiateurs inflammatoires appelés cytokines qui sont produites localement par des cellules inflammatoires du système immunitaire qui envahissent la cellule ß-pancréatiques. Les cytokines activent différentes voies de signalisation parmi lesquelles on distingue celles des Mitogen-Activated Protein Kinase (MAPKs) composées de trois familles de MAPKs: ERK1/2, p38, et JNK, et la voie NF-κB. Le traitement médical par injections quotidiennes d'insuline permet de contrôler la glycémie mais ne prévient pas les nombreuses complications secondaires liées à cette maladie. La greffe d'îlots de Langerhans est une alternative possible au traitement médical, considérée avantageuse comparée a la greffe du pancréas entier. En effet l'embolisation d'îlots dans le foie par injection intraportale constitue une intervention simple sans complications majeures. Néanmoins la technique de préparation d'îlots altère la fonction endocrine et cause la perte massive d'îlots pancréatiques. De plus, la transplantation elle-même expose la cellule ß à différents stress, notamment le stress par les cytokines inflammatoires qui provoque le rejet de greffon cellulaire. Dans la perspective d'augmenter les rendements des îlots purifiés, nous nous sommes intéressés à définir les voies majeures de stress qui régissent cette perte massive d'îlot lors du processus d'isolement et suite à l'exposition immédiate aux cytokines après transplantation. L'ensemble de ces résultats indique que le stress induit lors de l'isolement des îlots et celui des cytokines recrute différentes voies de signalisation intracellulaire (JNK, p38 et NF-κB) qui s'additionnent entre-elles pour altérer la fonction et la viabilité de l'îlot. De ce fait une stratégie doit être mise en place pour bloquer toute action synergique entre ces différentes voies activées pour améliorer la viabilité et la fonction de la cellule ß lors du greffon cellulaire. SUMMARY Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the progressive and selective destruction of the pancreatic ß-cells that secrete insulin, leading to absolute insulin deficiency. T1DM accounts for about 10% of all diabetes cases, affecting persons younger than 20 years of age. Medical treatment using daily exogenous insulin injection corrects hormone deficiency but does not prevent devastating complications such as heart attack, neuropathy, kidney failure, blindness, and amputation caused by the disease. Pancreatic islet transplantation (PIT) is one strategy that holds promise to cure patients with T1DM, but purified pancreatic islet grafts have failed to maintain long-term glucose homeostasis in human recipients, the reasons for this failure being still poorly understood. There is however a more immediate problem with islet grafting that is dependent upon poor islet recovery from donors and early islet loss following the first hours of grafting. This tendency of islet grafts to fail to function within a short period after transplantation is termed primary graft non-function (PNF). Indeed, the islet isolation procedure itself destroys cellular and non-cellular components of the pancreas that may play a role in supporting islet survival. Further, islet transplantation exposes cells to a variety of stressful stimuli, notably pro-inflammatory cytokines that encourage ß-cell death by apoptosis and lead to early graft failure. Altogether these mechanisms lead to an estimated loss of 60% of the total islet mass. Here, we have mapped the major intracellular stress signaling pathways that may mediate human islet loss by apoptosis during isolation and following cytokine attack. We found that several stress pathways are maximally activated from the earliest stages of the isolation procedure. Culturing islet for two days allow for the activated pathways to return to basal levels. We propose that protective strategies should 1) be initiated as early as possible during isolation of the islets, 2) should probably target the activated stress pathways that we uncovered during our studies and 3) should include culturing islets for two days post-isolation and prior transplantation.
Resumo:
Le diabète est une maladie chronique caractérisée par une élévation du taux de sucre dans le sang aussi appelé « glycémie » reflétant un état pathologique. L'élévation de la glycémie au long cours a des répercussions délétères sur nombreux de nos tissus et organes d'où l'apparition de complications sévères chez les sujets diabétiques pouvant atteindre les yeux, les reins, le système nerveux, le système cardiovasculaire et les membres inférieurs. La carence en une hormone essentielle à notre organisme, l'insuline, est au coeur du développement de la maladie. L'insuline induit la captation du glucose circulant dans le sang en excès suite à une prise alimentaire riche en glucides et favorise son utilisation et éventuellement son stockage dans les tissus tels que le foie, le tissu adipeux et les muscles. Ainsi, l'insuline est vitale pour réguler et maintenir stable notre niveau de glycémie. Les cellules bêta du pancréas sont les seules entités de notre corps capables de produire de l'insuline et une perte de fonctionnalité associée à leur destruction ont été mises en cause dans le processus pathologique du diabète de type 2. Cependant la pleine fonctionnalité et la maturation des cellules bêta n'apparaissent qu'après la naissance lorsque le pancréas en développement a atteint sa masse adulte définitive. Enfin, une fois la masse des cellules bêta définitive établie, leur nombre et volume restent relativement constants au cours de la vie adulte chez un sujet sain. Néanmoins, au cours de périodes critiques les besoins en insuline sont augmentés tel qu'observé chez les femmes enceintes et les personnes obèses qui ont une perte de sensibilité à l'insuline qui se traduit par la nécessité de sécréter plus d'insuline afin de maintenir une glycémie normale. Dans l'hypothèse où la compensation n'a pas lieu ou n'est pas aboutie, le diabète se développe. Le processus de maturation postnatale ainsi que les événements compensatoires sont donc des étapes essentielles et de nombreuses questions sont encore non résolues concernant l'identification des mécanismes les régulant. Parmi les acteurs potentiels figurent de petites molécules d'ARN découvertes récemment appelées microARNs et qui ont été rapidement suggérées très prometteuses dans l'identification de nouvelles cibles thérapeutiques dans le cadre du diabète et d'autres pathologies. Les microARNs vont réguler l'expression de notre génome sans en modifier la séquence, phénomène également appelé épigénétique, ce qui résulte en des différences de comportement et de fonction cellulaires. Les microARNs sont donc susceptibles de jouer un rôle clé dans l'ensemble des processus biologiques et notre environnement associé à nos prédispositions génétiques peuvent grandement modifier leur niveau et donc leur action, qui à son tour se répercutera sur notre état physiologique. En effet nous avons identifié des changements de microARNs dans les cellules d'îlots pancréatiques de modèles animaux (rats et souris) associés à un état de résistance à l'insuline (grossesse et obésité). Par le biais d'expériences in vitro sur des cellules bêta extraites de rats et conservées en culture, nous avons pu analyser de plus près l'implication des microARNs dans la capacité des cellules bêta à sécréter de l'insuline mais aussi à se multiplier et à survivre au sein d'un environnement toxique. Ainsi, nous avons identifié des microARNs qui participent positivement à la compensation des cellules bêta, sous la direction d'hormones telles les estrogènes ou d'une hormone libérée par l'intestin au cours de la digestion (l'inerétine GLP1) et qui est largement utilisée comme agent thérapeutique dans la médication contre le diabète. Dans un second temps nous avons utilisé une stratégie similaire afin de déterminer le rôle de microARNs préalablement détectés comme étant changés au cours du développement postnatal des cellules bêta chez le rat. Cette étude a également mené à l'identification de microARNs participant à la maturation et à l'expansion de la masse des cellules bêta sous l'influence de la composition du régime alimentaire et des besoins en insuline adéquats qui en dépendent. Ces études apportent la vision de nouveaux mécanismes moléculaires impliquant les microARNs et démontrant leur importance pour le bon fonctionnement des cellules bêta et leur capacité d'adaptation à l'environnement. -- Les cellules bêta sont une composante des îlots pancréatiques de Langerhans et sont des cellules hautement différenciées qui ont l'unique capacité de sécréter de l'insuline sous l'influence des nutriments suite à une prise alimentaire. L'insuline facilite l'incorporation de glucose dans ses tissus cibles tels le foie, le tissu adipeux et les muscles. Bien que les besoins en insuline soient relativement constants au cours de la vie d'un individu sain, certaines conditions associées à un état de résistance à l'insuline, telles la grossesse ou l'obésité, requièrent une libération d'insuline majorée. En cas de résistance à l'insuline, une dysfonction des cellules bêta plus ou moins associée à leur mort cellulaire, conduisent à une sécrétion d'insuline insuffisante et au développement d'une hyperglycémie chronique, caractéristique du diabète de type 2. Jusqu'à présent, les mécanismes moléculaires sous- jacents à la compensation des cellules bêta ou encore menant à leur dysfonction restent peu connus. Découverts récemment, les petits ARNs non-codant appelés microARNs (miARNs), suscitent un intérêt grandissant de par leur potentiel thérapeutique pour la prise en charge et le traitement du diabète. Les miARNs sont de puissants régulateurs de l'expression génique qui lient directement le 3'UTR de leurs ARN messagers cibles afin d'inhiber leur traduction ou d'induire leur dégradation, ce qui leur permet de contrôler des fonctions biologiques multiples. Ainsi, nous avons pris pour hypothèse que les miARNs pourraient jouer un rôle essentiel en maintenant la fonction des cellules bêta et des processus compensatoires afin de prévenir le développement du diabète. Lors d'une première étude, une analyse transcriptomique a permis l'identification de miARNs différemment exprimés au sein d'îlots pancréatiques de rattes gestantes. Parmi eux, le miR-338-3p a démontré la capacité de promouvoir la prolifération et la survie des cellules bêta exposées à des acides gras saturés et des cytokines pro-inflammatoires, sans altérer leur propriété sécrétrice d'insuline. Nous avons également identifié deux hormones reconnues pour leurs propriétés bénéfiques pour la physiologie de la cellule bêta, l'estradiol et l'incrétine GLP1, qui régulent les niveaux du miR-338-3p. Ce miARN intègre parfaitement les voies de signalisation de ces deux hormones dépendantes de l'AMP cyclique, afin de contrôler l'expression de nombreux gènes conduisant à son action biologique. Dans un projet ultérieur, notre objectif était de déterminer la contribution de miARNs dans l'acquisition de l'identité fonctionnelle des cellules bêta en période postnatale. En effet, directement après la naissance les cellules bêta sont reconnues pour être encore immatures et incapables de sécréter de l'insuline spécifiquement en réponse à l'élévation de la glycémie. Au contraire, la réponse insulinique induite par les acides aminés ainsi que la biosynthèse d'insuline sont déjà fonctionnelles. Nos recherches ont permis de montrer que les changements de miARNs corrélés avec l'apparition du phénotype sécrétoire en réponse au glucose, sont régis par la composition nutritionnelle du régime alimentaire et des besoins en insuline qui en découlent. En parallèle, le taux de prolifération des cellules bêta est considérablement réduit. Les miARNs que nous avons étudiés coordonnent des changements d'expression de gènes clés impliqués dans l'acquisition de propriétés vitales de la cellule bêta et dans la maintenancé de son identité propre. Enfin, ces études ont permis de clairement démontrer l'importance des miARNs dans la régulation de la fonction des cellules bêta pancréatiques. -- Beta-cells are highly differentiated cells localized in the pancreatic islets and are characterized by the unique property of secreting insulin in response to nutrient stimulation after meal intake. Insulin is then in charge of facilitating glucose uptake by insulin target tissues such as liver, adipose tissue and muscles. Despite insulin needs stay more or less constant throughout life of healthy individuals, there are circumstances such as during pregnancy or obesity which are associated to insulin resistance, where insulin needs are increased. In this context, defects in beta-cell function, sometimes associated with beta-cell loss, may result in the release of inappropriate amounts of insulin leading to chronic hyperglycemia, properly defined as type 2 diabetes mellitus. So far, the mechanisms underlying beta- cell compensation as well as beta-cell failure remain to be established. The recently discovered small non-coding RNAs called microRNAs (miRNAs) are emerging as interesting therapeutic targets and are bringing new hope for the treatment of diabetes. miRNAs display a massive potential in regulating gene expression by directly binding to the 3'UTR of messenger RNAs and by inhibiting their translation and/or stability, enabling them to modify a wide range of biological functions. In view of this, we hypothesized that miRNAs may play an essential role in preserving the functional beta-cell mass and permitting to fight against beta-cell exhaustion and decompensation that can lead to diabetes development. In a first study, global profiling in pancreatic islets of pregnant rats, a model of insulin resistance, led to the identification of a set of differentially expressed miRNAs. Among them, miR-338- 3p was found to promote beta-cell proliferation and survival upon exposure of islet cells to pro- apoptotic stimuli such as saturated fatty acids or pro-inflammatory cytokines, without impairment in their capacity to release insulin. We also discovered that miR-338-3p changes are driven by two hormones, the estradiol and the incretin GLP1, both well known for their beneficial impact on beta- cell physiology. Consistently, we found that miR-338-3p integrates the cAMP-dependent signaling pathways regulated by these two hormones in order to control the expression of numerous genes and execute its biological functions. In a second project, we aimed at determining whether miRNAs contribute to the acquisition of beta-cell identity. Indeed, we confirmed that right after birth beta-cells are still immature and are unable to secrete insulin specifically in response to elevated concentrations of glucose. In contrast, amino acid-stimulated insulin release as well as insulin biosynthesis are already fully functional. In parallel, newborn beta-cells are proliferating intensively within the expanding pancreas. Interestingly, we demonstrated that the miRNA changes and the subsequent acquisition of glucose responsiveness is influenced by the diet composition and the resulting insulin needs. At the same time, beta-cell proliferation declines. The miRNAs that we have identified orchestrate expression changes of essential genes involved in the acquisition of specific beta-cell properties and in the maintenance of a mature beta-cell identity. Altogether, these studies clearly demonstrate that miRNAs play important roles in the regulation of beta-cell function.
Resumo:
Progressive destruction of the insulin-producing beta cells in nonobese diabetic mice is observed after infiltration of the pancreas with lymphocytes [Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. & Tochino, Y. (1980) Exp. Anim. (Tokyo) 29, 1-13]. We show that the genes for tumor necrosis factor alpha and granzyme A, a serine protease associated with cytoplasmic granules of cytotoxic cells, are expressed during the development of spontaneous diabetes mellitus in the nonobese diabetic mouse. Granzyme A-positive cells are found both in and surrounding the islets, implying induction prior to islet infiltration. Tumor necrosis factor alpha expression is exclusively observed in the intra-islet infiltrate, predominantly in lymphocytes adjacent to insulin-producing beta cells, the targets of the autoimmune destruction, implying that tumor necrosis factor alpha expression is induced locally--i.e., in the islet. A considerable portion of cells expressing tumor necrosis factor alpha appear to be CD4+ T cells. This T-cell subset was previously shown to be necessary for development of the disease. Thus, these findings may be important for understanding the pathogenesis of autoimmune diabetes mellitus and potentially also for that of other T-cell-mediated autoimmune diseases.
Resumo:
Swiss national cancer mortality statistics from 1951 to 1984 and survival rates from the Vaud Cancer Registry datafile over the period 1974-1980 were considered in terms of sex ratios. Overall age-standardized cancer mortality for population aged 35-64 showed only a moderate decline in males (from 230 to 221/100,000), but a substantial one in females (from 191 to 152/100,000). Mortality from most cancer sites (except gallbladder and thyroid) was persistently higher in males, the male/female ratio ranging between 1.2 for intestines, skin, brain and lympho-reticular neoplasms to about 2 for stomach or pancreas, up to 7-10 for lung and cancers related to tobacco and alcohol (mouth or pharynx, oesophagus). The sex ratio for lung cancer increased between the early 1950's and the mid 1960's, but noticeably declined thereafter, probably reflecting trends in smoking prevalence among subsequent generations of Swiss males and females. Less obvious is the substantial increase in the sex ratio for liver cancer (from 1.6 to 5.7), which was evident in younger middle age, too. Population-based cancer survival statistics indicated that for most common sites rates were appreciably higher in females than in males. Thus, better survival explains part of the advantage in cancer mortality for women. This can be related to earlier diagnosis, better compliance or responsiveness to treatment, although there is no obvious single interpretation for this generalized more favourable pattern in females.
Resumo:
GLUT2-/- mice reexpressing GLUT1 or GLUT2 in their beta-cells (RIPGLUT1 x GLUT2-/- or RIPGLUT2 x GLUT2-/- mice) have nearly normal glucose-stimulated insulin secretion but show high glucagonemia in the fed state. Because this suggested impaired control of glucagon secretion, we set out to directly evaluate the control of glucagonemia by variations in blood glucose concentrations. Using fasted RIPGLUT1 x GLUT2-/- mice, we showed that glucagonemia was no longer increased by hypoglycemic (2.5 mmol/l glucose) clamps or suppressed by hyperglycemic (10 and 20 mmol/l glucose) clamps. However, an increase in plasma glucagon levels was detected when glycemia was decreased to < or =1 mmol/l, indicating preserved glucagon secretory ability, but of reduced sensitivity to glucopenia. To evaluate whether the high-fed glucagonemia could be due to an abnormally increased tone of the autonomic nervous system, fed mutant mice were injected with the ganglionic blockers hexamethonium and chlorisondamine. Both drugs lead to a rapid return of glucagonemia to the levels found in control fed mice. We conclude that 1) in the absence of GLUT2, there is an impaired control of glucagon secretion by low or high glucose; 2) this impaired glucagon secretory activity cannot be due to absence of GLUT2 from alpha-cells because these cells do not normally express this transporter; 3) this dysregulation may be due to inactivation of GLUT2-dependent glucose sensors located outside the endocrine pancreas and controlling glucagon secretion; and 4) because fed hyperglucagonemia is rapidly reversed by ganglionic blockers, this suggests that in the absence of GLUT2, there is an increased activity of the autonomic nervous system stimulating glucagon secretion during the fed state.
Resumo:
The control of body weight and of blood glucose concentrations depends on the exquisite coordination of the function of several organs and tissues, in particular the liver, muscle and fat. These organs and tissues have major roles in the use and storage of nutrients in the form of glycogen or triglycerides and in the release of glucose or free fatty acids into the blood, in periods of metabolic needs. These mechanisms are tightly regulated by hormonal and nervous signals, which are generated by specialized cells that detect variations in blood glucose or lipid concentrations. The hormones insulin and glucagon not only regulate glycemic levels through their action on these organs and the sympathetic and parasympathetic branches of the autonomic nervous system, which are activated by glucose or lipid sensors, but also modulate pancreatic hormone secretion and liver, muscle and fat glucose and lipid metabolism. Other signaling molecules, such as the adipocyte hormones leptin and adiponectin, have circulating plasma concentrations that reflect the level of fat stored in adipocytes. These signals are integrated at the level of the hypothalamus by the melanocortin pathway, which produces orexigenic and anorexigenic neuropeptides to control feeding behavior, energy expenditure and glucose homeostasis. Work from several laboratories, including ours, has explored the physiological role of glucose as a signal that regulates these homeostatic processes and has tested the hypothesis that the mechanism of glucose sensing that controls insulin secretion by the pancreatic beta-cells is also used by other cell types. I discuss here evidence for these mechanisms, how they integrate signals from other nutrients such as lipids and how their deregulation may initiate metabolic diseases.
Resumo:
The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.
Resumo:
Neuropeptide Y (NPY) is a 36 amino acid peptide known to inhibit glucose-stimulated insulin secretion. NPY has recently been shown to be synthetized within rat islets of Langerhans and to be secreted in a differentiated rat insulin-secreting cell line, and as to this date the localization of NPY in human endocrine pancreas has not been reported. As NPY shares high amino acid sequence homology with peptide YY (PYY) and pancreatic polypeptide (PP), the polyclonal antibodies raised against these peptides often cross-react with each other. To demonstrate the presence of NPY in the human endocrine pancreas, we used a highly specific monoclonal antibody raised against NPY and another against its C-flanking peptide (CPON). We studied three cases of hyperplasia of Langerhans islets and 11 cases of endocrine tumors of the pancreas. NPY and CPON were detected in all three cases of hyperplasia. For the 11 pancreatic tumors, five and nine of the tumors were positive for the antibodies NPY and CPON, respectively. The two negative tumors for CPON immunoreactivity were differentiated insulinomas, which showed no evidence of other hormonal secretion. In normal Langerhans islet, NPY and CPON immunoreactivities were colocalized in glucagon-producing cells (alpha-cells) and in a few insulin-secreting cell (beta-cells).(ABSTRACT TRUNCATED AT 250 WORDS)