259 resultados para adaptive markers
Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.
Resumo:
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.
Resumo:
We report 22 new polymorphic microsatellites for the Ivory gull (Pagophila eburnea), and we describe how they can be efficiently co-amplified using multiplexed polymerase chain reactions. In addition, we report DNA concentration, amplification success, rates of genotyping errors and the number of genotyping repetitions required to obtain reliable data with three types of noninvasive or nondestructive samples: shed feathers collected in colonies, feathers plucked from living individuals and buccal swabs. In two populations from Greenland (n=21) and Russia (Severnaya Zemlya Archipelago, n=21), the number of alleles per locus varied between 2 and 17, and expected heterozygosity per population ranged from 0.18 to 0.92. Twenty of the markers conformed to Hardy-Weinberg and linkage equilibrium expectations. Most markers were easily amplified and highly reliable when analysed from buccal swabs and plucked feathers, showing that buccal swabbing is a very efficient approach allowing good quality DNA retrieval. Although DNA amplification success using single shed feathers was generally high, the genotypes obtained from this type of samples were prone to error and thus need to be amplified several times. The set of microsatellite markers described here together with multiplex amplification conditions and genotyping error rates will be useful for population genetic studies of the Ivory gull.
Resumo:
AIM: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. METHODS: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. RESULTS: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. CONCLUSION: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
Cancer testis antigens (CTAs) are expressed in a variety of malignant tumors but not in any normal adult tissues except germ cells and occasionally placenta. Because of this tumor-associated pattern of expression, CTAs are regarded as potential vaccine targets. The expression of CTAs in gastrointestinal stromal tumors (GIST) has not been analyzed systematically previously. The present study was performed to analyze the expression of CTA in GIST and to determine if CTA expression correlates with prognosis. Thirty-five GIST patients were retrospectively analyzed for their expression of CTAs by immunohistochemistry using the following monoclonal antibodies (mAb/antigen): MA454/MAGE-A1, M3H67/MAGE-A3, 57B/MAGE-A4, CT7-33/MAGE-C1 and E978/NY-ESO-1. Fourteen tumors (40%) expressed 1 or more of the 5 CTAs tested. Fourteen percent (n = 5/35) were positive for MAGE-A1, MAGE-A3 or MAGE-A4, respectively. Twenty-six percent (n = 9/35) stained positive for MAGE-C1 and 20% (n = 7/35) for NY-ESO-1. A highly significant correlation between CTA expression and tumor recurrence risk was observed (71% vs. 29%; p = 0.027). In our study population, the high-risk GIST expressed CTAs more frequently than low-risk GIST (p = 0.012). High-risk GISTs which stained positive for at least 1 CTA, recurred in 100% (n = 25) of the cases. This is the first study analyzing CTA expression in GIST and its prognostic value for recurrence. The CTA staining could add information to the individual patient prognosis and represent an interesting target for future treatment strategies.
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.
Resumo:
BACKGROUND: Alcohol consumption may affect the course of HIV infection and/or antiretroviral therapy (ART). The authors investigated the association between self-reported alcohol consumption and HIV surrogate markers in both treated and untreated individuals. DESIGN: Prospective cohort study. METHODS: Over a 7-year period, the authors analyzed 2 groups of individuals in the Swiss HIV Cohort Study: (1) ART-naïve individuals remaining off ART and (2) individuals initiating first ART. For individuals initiating first ART, time-dependent Cox proportional hazards models were used to assess the association between alcohol consumption, virological failure, and ART interruption. For both groups, trajectories of log-transformed CD4 cell counts were analyzed using linear mixed models with repeated measures. RESULTS: The authors included 2982 individuals initiating first ART and 2085 ART naives. In individuals initiating first ART, 241 (8%) experienced virological failure. Alcohol consumption was not associated with virological failure. ART interruption was noted in 449 (15%) individuals and was more prevalent in severe compared with none/light health risk drinkers [hazard ratio: 2.24, 95% confidence interval: 1.42 to 3.52]. The association remained significant even after adjusting for nonadherence. The authors did not find an association between alcohol consumption and change in CD4 cell count over time in either group. CONCLUSIONS: No effect of alcohol consumption on either virological failure or CD4 cell count in both groups of ART-initiating and ART-naive individuals was found. However, severe drinkers were more likely to interrupt ART. Efforts on ART continuation should be especially implemented in individuals reporting high alcohol consumption.
Resumo:
BACKGROUND: Several markers of atherosclerosis and of inflammation have been shown to predict coronary heart disease (CHD) individually. However, the utility of markers of atherosclerosis and of inflammation on prediction of CHD over traditional risk factors has not been well established, especially in the elderly. METHODS: We studied 2202 men and women, aged 70-79, without baseline cardiovascular disease over 6-year follow-up to assess the risk of incident CHD associated with baseline noninvasive measures of atherosclerosis (ankle-arm index [AAI], aortic pulse wave velocity [aPWV]) and inflammatory markers (interleukin-6 [IL-6], C-reactive protein [CRP], tumor necrosis factor-a [TNF-a]). CHD events were studied as either nonfatal myocardial infarction or coronary death ("hard" events), and "hard" events plus hospitalization for angina, or the need for coronary-revascularization procedures (total CHD events). RESULTS: During the 6-year follow-up, 283 participants had CHD events (including 136 "hard" events). IL-6, TNF-a and AAI independently predicted CHD events above Framingham Risk Score (FRS) with hazard ratios [HR] for the highest as compared with the lowest quartile for IL-6 of 1.95 (95%CI: 1.38-2.75, p for trend<0.001), TNF-a of 1.45 (95%CI: 1.04-2.02, p for trend 0.03), of 1.66 (95%CI: 1.19-2.31) for AAI £0.9, as compared to AAI 1.01-1.30. CRP and aPWV were not independently associated with CHD events. Results were similar for "hard" CHD events. Addition of IL-6 and AAI to traditional cardiovascular risk factors yielded the greatest improvement in the prediction of CHD; C-index for "hard"/total CHD events increased from 0.62/0.62 for traditional risk factors to 0.64/0.64 for IL-6 addition, 0.65/0.63 for AAI, and 0.66/0.64 for IL-6 combined with AAI. Being in the highest quartile of IL-6 combined with an AAI £ 0.90 or >1.40 yielded an HR of 2.51 (1.50-4.19) and 4.55 (1.65-12.50) above FRS, respectively. With use of CHD risk categories, risk prediction at 5 years was more accurate in models that included IL-6, AAI or both, with 8.0, 8.3 and 12.1% correctly reclassified respectively. CONCLUSIONS: Among older adults, markers of atherosclerosis and of inflammation, particularly IL-6 and AAI, are independently associated with CHD. However, these markers only modestly improve cardiovascular risk prediction beyond traditional risk factors. Acknowledgments: This study was supported by Contracts NO1-AG-6-2101, NO1-AG-6- 2103, and NO1-AG-6-2106 of the National Institute on Aging. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging.
Resumo:
Red wood ants (Formica rufa group) constitute a group of species that are considered to be among the most promising bioindicators in forest ecosystems. However, because of their morphological similarity and intraspecific variability, morphological species identification can be difficult. Considerable expertise is necessary to discriminate between the sibling species F. lugubris and F. paralugubris, two species that often live in sympatry in the same Alpine forests. New taxonomic tools providing rapid and reliable species identification are needed. We present a simple and reliable molecular technique based on mtDNA (COI gene) and a restriction enzyme for discriminating between F. lugubris and F. paralugubris. We confirm the validity of this method with a Bayesian analysis based on microsatellites. This new molecular tool represents a clear breakthrough for discriminating between F. lugubris and F. paralugubris and is likely to be helpful in large-scale biomonitoring.
Resumo:
The enzyme glutamate dehydrogenase (GDH) is important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. Human GDH exists in housekeeping and brain-specific isotypes encoded by the genes GLUD1 and GLUD2, respectively. Here we show that GLUD2 originated by retroposition from GLUD1 in the hominoid ancestor less than 23 million years ago. The amino acid changes responsible for the unique brain-specific properties of the enzyme derived from GLUD2 occurred during a period of positive selection after the duplication event.