68 resultados para Virulence Factors, Bordetella


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Waddlia chondrophila is an emerging pathogen associated with abortion in cattle. In humans, a growing body of evidence supports its pathogenic role in miscarriage and in respiratory tract infection. The human pathogenicity of W. chondrophila is further supported by the presence of several virulence factors including a catalase, a functional T3SS and several adhesins. Despite this medical importance, no commercial tests are available and diagnostic of this strict intracellular bacterium mainly relies on serology, PCR and immunohistochemistry. So far, the epidemiology of W. chondrophila remains largely unexplored and zoonotic, waterborne or interhuman transmission has been considered. Apart from its pathogenic role, chlamydiologists are also interested in W. chondrophila in order to better understand biological mechanisms conserved and shared with Chlamydia spp. Indeed, W. chondrophila proved to be a useful model organism to study the pathobiology of chlamydiae thanks to its rapid replication, its large size allowing precise subcellular protein localization, as well as its growth in Dictyostelium amoebae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammasome-mediated IL-1beta production is central to the innate immune defects that give rise to certain autoinflammatory diseases and may also be associated with the generation of IL-17-producing CD4(+) T (Th17) cells that mediate autoimmunity. However, the role of the inflammasome in driving adaptive immunity to infection has not been addressed. In this article, we demonstrate that inflammasome-mediated IL-1beta plays a critical role in promoting Ag-specific Th17 cells and in generating protective immunity against Bordetella pertussis infection. Using a murine respiratory challenge model, we demonstrated that the course of B. pertussis infection was significantly exacerbated in IL-1R type I-defective (IL-1RI(-/-)) mice. We found that adenylate cyclase toxin (CyaA), a key virulence factor secreted by B. pertussis, induced robust IL-1beta production by dendritic cells through activation of caspase-1 and the NALP3-containing inflammasome complex. Using mutant toxins, we demonstrate that CyaA-mediated activation of caspase-1 was not dependent on adenylate cyclase enzyme activity but was dependent on the pore-forming capacity of CyaA. In addition, CyaA promoted the induction of Ag-specific Th17 cells in wild-type but not IL-1RI(-/-) mice. Furthermore, the bacterial load was enhanced in IL-17-defective mice. Our findings demonstrate that CyaA, a virulence factor from B. pertussis, promotes innate IL-1beta production via activation of the NALP3 inflammasome and, thereby, polarizes T cell responses toward the Th17 subtype. In addition to its known role in subverting host immunity, our findings suggest that CyaA can promote IL-1beta-mediated Th17 cells, which promote clearance of the bacteria from the respiratory tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different "hot spots," were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les parasites jouent un rôle clef dans l'évolution des comportements et des traits d'histoire de vie de leurs hôtes. Le parasitisme s'avère parfois dévastateur à l'échelle de population d'hôtes, et peut également altérer certains traits associés à la valeur sélective d'un individu infecté, tels que son succès reproducteur ou encore son taux de mortalité. La coévolution hôte/parasite, qui représente l'une des forces sélectives les plus puissantes dans l'évolution des organismes, peut également conduire les partenaires de l'association parasitaire à s'adapter localement à des environnements hétérogènes. Cette thèse porte sur l'étude de parasites aviaires, du genre Plasmodium, Haemopro- teus et Leucocytozoon (Haemosporidae), naturellement associés à différentes populations de mésanges charbonnières (Parus major) et d'hirondelles des fenêtres (Delichon ur- bicum). Dans un premier temps, nous avons cherché à déterminer comment se distribuent ces parasites au sein de différentes populations hôtes et si ces communautés de parasites sont structurées. Par la suite, la principale question à laquelle nous voulions répondre était de savoir comment ces parasites, et notamment après coexistence de plusieurs lignées génétiques d'Haemosporidae au sein dun même-individu (i.e. co-infection), affectent la physiologie et le succès de reproducteur des hôtes. Nos résultats suggèrent que la distribution des Haemosporidae est principalement gouvernée par la présence d'insectes vecteurs et que la persistance de l'infection chez les hôtes varie en fonction du genre d'Haemosporidae (Chapitre 1-2). Par ailleurs, nous avons trouvé que des lignées de parasite génétiquement distinctes peuvent avoir des effets contrastés sur leurs hôtes. Par exemple, les hôtes exhibent des différences de parasitémie marquées en fonction des lignées de parasites responsable de l'infection. De plus, le succès reproducteur ainsi que la charge parasitaire des mésanges infectées par Plasmodium ou Haemoproteus n'étaient pas affecté par l'infection simultanée avec Leucocytozoon (Chapitre 2-3). Dans le Chapitre 4, j'ai examiné la capacité immunitaire de mésanges charbonnières infectées par des hémosporidies. Les résultats n'ont pas été concluant, et je suggère fortement une réévaluation de ceux-ci dans de futures études. Les mésanges charbonnières ne semblent pas signaler leur statut infectieux par la coloration de leur plumage (Chapitre 5); toutefois, la coloration noire des plumes reflète l'état de stress oxydatif des mésanges, qui dépend lui-même de l'infection parasitaire. La coloration verte pourrait également indiquer la qualité des soins paxentaux délivrés par les mésanges adultes femelles à leurs petits, comme le suggère la corrélation que nous avons observée entre la masse des jeunes d'une nichée et la coloration de leur mère. Les hirondelles capturées en Algérie souffrent plus de l'infection que celles échantillon¬nées en Europe (Chapitre 6). Les similitudes observées entre les communautés de par¬asites affectant les populations européennes et celles des populations nord-africaines suggèrent que la transmission des parasites a lieu lors de la migration vers le sud. A l'instar de nos observations sur les mésanges dans les chapitres 2 et 3, les hirondelles co-infectées ne montrent pas d'altérations de leur condition physique. Cette thèse démontre qu'il existe, au sein des populations de mésanges charbonnières, des interactions antagonistes entre, d'une part, les parasites et leurs hôtes et d'autre part, entre différent parasites. Le résultat de ces interactions antagonistes varie en fonction des espèces et de la zone géographique considérée. Nous avons démontré que les interactions ne suivent pas toujours la théorie, puisque la coevolution qui, en suivant le concept de la virulence, devrait augmenter la charge parasitaire et diminuer la condition physique des hôtes, ne montre pourtant pas d'impact négatif sur les populations de mésanges. Nous pouvons maintenant concentrer nos efforts à la caractérisation des interactions antagonistes. De plus, grâce aux avancées des méthodes moléculaires, nous pouvons suivre et étudier en détails comment ces interactions se manifestent et quels sont leurs effets sur la condition physique des hôtes. - Parasites are key in shaping various behavioural and life-history traits of their hosts. The influence of parasitism on host populations varies from slight to devastating and might influence such parameters as mortality rates or reproductive success. Host-parasite coevolution is one of the most powerful selective forces in evolution and can lead to local adaptation of parasites and hosts in spatially structured environments. In this thesis, I studied haemosporidian parasites in different populations of great tits (Parus major) and house martins (Delichon urbicum). Firstly, I wanted to determine how parasites are distributed and if parasite communities are structured. The main question I wanted to address hereafter was how parasites, and specifically infection with multiple genera of parasites (i.e. co-infection) influenced host physiology and reproductive success. I found that parasite distribution is environmentally driven and could therefore be closely linked to vector prevalence; and that the stability of parasite infection over time is genus-dependent (Chapter 1 - 2). I further found that different haemosporidian lineages might interact differently with their hosts as parasitaemia was strongly lineage-specific and that the presence of Leucocytozoon parasites showed no correlation to Plasmodium or Haemoproteus parasitaemia, nor to great tit reproductive success (Chapter 2-3). In Chapter 4 I examined immune capacity of haemosporidian-infected great tits. The results proved inconclusive, and I strongly suggest re-evaluation hereof in future work. Great tits do not appear to signal parasite infection through plumage colouration (Chapter 5); however, infection did have a link to oxidative stress resistance which is strongly signalled through the black breast stripe, with darker males being more resistant and darker females less resistant. Females might incur different costs associated with darker stripes. This would allow reversal of signaling function. Green colouration could also serve as a cue for female provisioning quality as indicated by the strong correlation between colouration and chick body mass. Breeding house martins caught in Algeria suffer greater haemosporidian infection than European populations (Chapter 6). Similar parasite communities in European and North-African populations suggest transmission of parasites may occur during southward migration. Similarly to what was observed in great tits in Chapter 2 and 3, no relationship was found between parasite co-infection and Swiss house martin body condition. This thesis demonstrates that host-parasite and inter-parasite antagonistic interac¬tions exist in great tit populations. How these interactions play out is species dependent and varies geographically. I have demonstrated that interactions do not always follow the theory, as co-infection - which under the concept of virulence should increase parasitaemia and decrease body condition - showed no negative impact on great tit populations. We can now concentrate our efforts on characterising these antagonistic interactions, and with the advance in molecular methods, track and investigate how these interactions play out and what the effect on host fitness is.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the "pool effect." After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt.