88 resultados para Vector sensor
Resumo:
Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.
Resumo:
The paper presents a novel method for monitoring network optimisation, based on a recent machine learning technique known as support vector machine. It is problem-oriented in the sense that it directly answers the question of whether the advised spatial location is important for the classification model. The method can be used to increase the accuracy of classification models by taking a small number of additional measurements. Traditionally, network optimisation is performed by means of the analysis of the kriging variances. The comparison of the method with the traditional approach is presented on a real case study with climate data.
Resumo:
Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.
Resumo:
Background: Two or three DNA primes have been used in previous smaller clinical trials, but the number required for optimal priming of viral vectors has never been assessed in adequately powered clinical trials. The EV03/ANRS Vac20 phase I/II trial investigated this issue using the DNA prime/poxvirus NYVAC boost combination, both expressing a common HIV-1 clade C immunogen consisting of Env and Gag-Pol-Nef polypeptide. Methods: 147 healthy volunteers were randomly allocated through 8 European centres to either 3xDNA plus 1xNYVAC (weeks 0, 4, 8 plus 24; n¼74) or to 2xDNA plus 2xNYVAC (weeks 0, 4 plus 20, 24; n¼73), stratified by geographical region and sex. T cell responses were quantified using the interferon g Elispot assay and 8 peptide pools; samples from weeks 0, 26 and 28 (time points for primary immunogenicity endpoint), 48 and 72 were considered for this analysis. Results: 140 of 147 participants were evaluable at weeks 26 and/ or 28. 64/70 (91%) in the 3xDNA arm compared to 56/70 (80%) in the 2xDNA arm developed a T cell response (P¼0.053). 26 (37%) participants of the 3xDNA arm developed a broader T cell response (Env plus at least to one of the Gag, Pol, Nef peptide pools) versus 15 (22%) in the 2xDNA arm (P¼0.047). At week 26, the overall magnitude of responses was also higher in the 3xDNA than in the 2xDNA arm (similar at week 28), with a median of 545 versus 328 SFUs/106 cells at week 26 (P<0.001). Preliminary overall evaluation showed that participants still developed T-cell response at weeks 48 (78%, n¼67) and 72 (70%, n¼66). Conclusion: This large clinical trial demonstrates that optimal priming of poxvirus-based vaccine regimens requires 3 DNA regimens and further confirms that the DNA/NYVAC prime boost vaccine combination is highly immunogenic and induced durable T-cell responses.
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
PURPOSE OF REVIEW: In this review, we will provide the scientific rationale for the use of poxvirus vectors in the field of HIV vaccines, the immunological profile of the vaccine-induced immune responses, an update on the current use of poxvirus vector-based vaccines in HIV vaccine clinical trials, and the development of new modified poxvirus vectors with improved immunological profile. RECENT FINDINGS: An Ad5-HIV vaccine was tested in a phase IIb clinical trial (known as the Step trial). Vaccinations in the Step trial were discontinued because the vaccine did not show any effect on acquisition of infection and on viral load. After the disappointing failure of the Step trial, the field of HIV vaccine has regained enthusiasm and vigour due to the promising protective effect observed in the phase III efficacy trial (known as RV-144) performed in Thailand which has tested a poxvirus-gp120 combination. SUMMARY: The RV-144 phase III has provided for the first time evidence that an HIV vaccine can prevent HIV infection. The results from the RV-144 trial are providing the scientific rationale for the future development of the HIV vaccine field and for designing future efficacy trials.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
RESUME L'utilisation de la thérapie génique dans l'approche d'un traitement des maladies oculaires dégénératives, plus particulièrement de la rétinite pigmentaire, semble être très prometteuse (Acland et al. 2001). Parmi les vecteurs développés, les vecteurs lentiviraux (dérivé du virus humain HIV-1), permettent la transduction des photorécepteurs après injection sous-rétinienne chez la souris durant les premiers jours de vie. Cependant l'efficacité du transfert de gène est nettement plus limitée dans ce type cellulaire après injection chez l'adulte (Kostic et al. 2003). L'objet de notre étude est de déterminer si la présence d'une barrière physique produite au cours du développement, située entre les photorécepteurs et l'épithélium pigmentaire ainsi qu'entre les photorécepteurs eux-mêmes, est responsable de: la diminution de l'entrée en masse du virus dans les photorécepteurs, minimisant ainsi son efficacité chez la souris adulte. De précédentes recherches, chez le lapin, ont décrit la capacité d'enzymes spécifiques comme la Chondroïtinase ABC et la Neuraminidase X de modifier la structure de la matrice entourant les photorécepteurs (Inter Photoreceptor Matrix, IPM) par digestion de certains de ses constituants suite à leur injection dans l'espace sous-rétinien (Yao et al. 1990). Considérant l'IPM comme une barrière physique, capable de réduire l'efficacité de transduction des photorécepteurs chez la souris adulte, nous avons associé différentes enzymes simultanément à l'injection sous-rétinienne de vecteurs lentiviraux afin d'améliorer la transduction virale en fragilisant I'IPM, la rendant ainsi plus perméable à la diffusion du virus. L'injection sous-rétinienne de Neuraminidase X et de Chondroïtinase ABC chez la souris induit des modifications structurales de l'IPM qui se manifestent respectivement par la révélation ou la disparition de sites de liaison de la peanut agglutinin sur les photorécepteurs. L'injection simultanée de Neuraminidase X avec le vecteur viral contenant le transgène thérapeutique augmente significativement le nombre de photorécepteurs transduits (environ cinq fois). Nous avons en fait démontré que le traitement enzymatique augmente principalement la diffusion du lentivirus dans l'espace situé entre l'épithélium pigmentaire et les photorécepteurs. Le traitement à la Chondroïtinase ABC n'entraîne quant à elle qu'une légère amélioration non significative de la transduction. Cette étude montre qu'une meilleure connaissance de l'IPM ainsi que des substances capables de la modifier (enzymes, drogues etc.) pourrait aider à élaborer de nouvelles stratégies afin d'améliorer la distribution de vecteurs viraux dans la rétine adulte.
Resumo:
In the root-colonizing biocontrol strain CHA0 of Pseudomonas fluorescens, cell density-dependent synthesis of extracellular, plant-beneficial secondary metabolites and enzymes is positively regulated by the GacS/GacA two-component system. Mutational analysis of the GacS sensor kinase using improved single-copy vectors showed that inactivation of each of the three conserved phosphate acceptor sites caused an exoproduct null phenotype (GacS-), whereas deletion of the periplasmic loop domain had no significant effect on the expression of exoproduct genes. Strain CHA0 is known to synthesize a solvent-extractable extracellular signal that advances and enhances the expression of exoproduct genes during the transition from exponential to stationary growth phase when maximal exoproduct formation occurs. Mutational inactivation of either GacS or its cognate response regulator GacA abolished the strain's response to added signal. Deletion of the linker domain of the GacS sensor kinase caused signal-independent, strongly elevated expression of exoproduct genes at low cell densities. In contrast to the wild-type strain CHA0, the gacS linker mutant and a gacS null mutant were unable to protect tomato plants from crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici in a soil-less microcosm, indicating that, at least in this plant-pathogen system, there is no advantage in using a signal-independent biocontrol strain.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Purpose: We previously demonstrated efficient retinal rescue of RPE65 mouse models (Rpe65-/- (Bemelmans et al, 2006) and Rpe65R91W/R91W mice) using a HIV1-derived lentiviral vector encoding for the mouse RPE65 cDNA. In order to optimize a lentiviral vector as an alternative tool for RPE65-derived Leber Congenital Amaurosis clinical trials, we evaluated the efficiency of an integration-deficient lentiviral vector (IDLV) encoding the human RPE65 cDNA to restore retinal function in the Rpe65R91W/R91W mice. Methods: An HIV-1-derived lentiviral vector expressing either the hrGFPII or the human Rpe65 cDNA under the control of a 0.8 kb fragment of the human Rpe65 promoter (R0.8) was produced by transient transfection of 293T cells. A LQ-integrase mutant was used to generate the IDLV vectors. IDLV-R0.8-hRPE65 or hrGFPII were injected subretinally into 1 month-old Rpe65R91W/R91W mice. Functional rescue was assessed by ERG (1 and 3 months post-injection) and cone survival by immunohistology. Results: An increased light sensitivity was detected by scotopic ERG in animals injected with IDLV-R0.8-hRPE65 compared to hrGFPII-treated animals or untreated mice. However the improvement was delayed compared to integration-proficient LV and observed at 3 months but not 1 month post-injection. Immunolabelling of cone markers showed an increased number of cones in the transduced area compared to control groups. Conclusions: The IDLV-R0.8-hRPE65 vectors allow retinal improvement in the Rpe65R91W/R91W mice. Both rod function and cone survival were demonstrated even if there is a delay in the rescue as assessed by scotopic ERG. Integration-deficient vectors minimize insertional mutagenesis and thus are safer candidates for human application. Further experiments using large animals are now needed to validate correct gene transfer and expression of the RPE65 gene as well as tolerance of the vector after subretinal injection before envisaging a clinical trial application.