88 resultados para Tracking and trailing.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
We propose a new terrane subdivision of Nicaragua and Northern Costa Rica, based on Upper Triassic to Upper Cretaceous radiolarian biochronology of ribbon radiolarites, the newly studied Siuna Serpentinite Mélange, and published 40Ar/39Ar dating and geochemistry of mafic and ultramafic igneous rock units of the area. The new Mesquito Composite Oceanic Terrane (MCOT) comprises the southern half of the Chortis Block, that was assumed to be a continental fragment of N-America. The MCOT is defined by 4 corner localities characterized by ultramafic and mafic oceanic rocks and radiolarites of Late Triassic, Jurassic and Early Cretaceous age: 1. The Siuna Serpentinite Mélange (NE-Nicaragua), 2. The El Castillo Mélange (Nicaragua/Costa Rica border), 3.The Santa Elena Ultramafics (N-Costa Rica) and, 4. DSDP Legs 67/84. 1. The Siuna Serpentinite Mélange contains, high pressure metamorphic mafics and Middle Jurassic (Bajocian-Bathonian) radiolarites in original, sedimentary contact with arc-metandesites. The Siuna Mélange also contains Upper Jurassic black detrital chert formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma (earliest Cretaceous). 2. The El Castillo Mélange comprises a radiolarite block tectonically embedded in serpentinite that yielded a diverse Rhaetian (latest Triassic) radiolarian assemblage, the oldest fossils recovered so far from S-Central America. 3. The Santa Elena Ultramafics of N-Costa Rica together with the serpentinite outcrops near El Castillo (2) in Southern Nicaragua, are the southernmost outcrops of the MCOT. The Santa Elena Unit (3) itself is still undated, but it is thrust onto the middle Cretaceous Santa Rosa Accretionary Complex (SRAC), that contains Lower to Upper Jurassic, highly deformed radiolarite blocks, probably reworked from the MCOT, which was the upper plate with respect to the SRAC. 4. Serpentinites, metagabbros and basalts have long been known from DSDP Leg 67/84 (3), drilled off Guatemala in the Nicaragua-Guatemala forearc basement. They have been restudied and reveal 40Ar/39Ar dated Upper Triassic to middle Cretaceous enriched Ocean Island Basalts and Jurassic to Lower Cretaceous depleted Island arc rocks of probable Pacific origin. The area between localities 1-4 is largely covered by Tertiary to Recent arcs, but we suspect that its basement is made of oceanic/accreted terranes. Earthquake seismic studies indicate an ill-defined, shallow Moho in this area. The MCOT covers most of Nicaragua and could extend to Guatemala to the W and form the Lower (southern) Nicaragua Rise to the NE. Some basement complexes of Jamaica, Hispaniola and Puerto Rico may also belong to the MCOT. The Nicoya Complex s. str. has been regarded as an example of Caribbean crust and the Caribbean Large Igneous Province (CLIP). However, 40Ar/39Ar - dates on basalts and intrusives indicate ages as old as Early Cretaceous. Highly deformed Jurassic and Lower Cretaceous radiolarites occur as blocks within younger intrusives and basalts. Our interpretation is that radiolarites became first accreted to the MCOT, then became reworked into the Nicoya Plateau in Late Cretaceous times. This implies that the Nicoya Plateau formed along the Pacific edge of the MCOT, independent form the CLIP and most probably unrelated with he Galapagos hotspot. No Jurassic radiolarite, no older sediment age than Coniacian-Santonian, and no older 40Ar/39Ar age than 95 Ma is known from S-Central America between SE of Nicoya and Colombia. For us this area represents the trailing edge of the CLIP s. str.
Resumo:
Ant colonies are known for their complex and efficient social organization that com-pletely lacks hierarchical structure. However, due to methodological difficulties in follow¬ing all ants of a colony, it was until now impossible to investigate the social and temporal organization of colonies. We developed a tracking system that allows tracking the posi¬tions and orientations of several hundred individually labeled ants continuously, providing for the first time quantitative long term data on all individuals of a colony. These data permit reconstructing trajectories, activity patterns and social networks of all ants in a colony and enable us to investigate ant behavior quantitatively in previously unpreceded ways. By analyzing the spatial positions and social interactions of all ants in six colonies for 41 days we show that ant colonies are organized in groups of nurses, nest patrollers and foragers. Workers of each group were highly interconnected and occupied similar spa¬tial locations in the nest. Groups strongly segregated spatially, and were characterized by unique behavioral signatures. Nurses spent most of their time on the brood. Nest patrollers frequently visited the rubbish pile, and foragers frequently visited the forag¬ing arena. In addition nurses were on average younger than nest patrollers who were, in turn, younger than foragers. We further show that workers had a preferred behav¬ioral trajectory and moved from nursing to nest patrolling, and from nest patrolling to foraging. By analyzing the activity patterns of all ants we show that only a third of all workers in a colony exhibit circadian rhythms and that these rhythms shortened by on av¬erage 42 minutes in constant darkness, thereby demonstrating the presence of a functional endogenous clock. Most rhythmic workers were foragers suggesting that rhythmicity is tightly associated with task. Nurses and nest patrollers were arrhythmic which most likely reflects plasticity of the circadian clock, as isolated workers in many species exhibit circadian rhythmicity. Altogether our results emphasize that ant colonies, despite their chaotic appearance, repose on a strong underlying social and temporal organization. - Les colonies de fourmis sont connues pour leur organisation sociale complexe et effi-cace, charactérisée par un manque absolu de structure hiérarchique. Cependant, puisqu'il est techniquement très difficile de suivre toutes les fourmis d'une colonie, il a été jusqu'à maintenant impossible d'étudier l'organisation sociale et temporelle des colonies de four-mis. Nous avons développé un système qui permet d'extraire en temps réel à partir d'images vidéo les positions et orientations de plusieurs centaines de fourmis marquées individuellement. Nous avons pu ainsi générer pour la première fois des données quanti-tatives et longitudinales relatives à des fourmis appartenant à une colonie. Ces données nous ont permis de reconstruire la trajectoire et l'activité de chaque fourmi ainsi que ses réseaux sociaux. Ceci nous a permis d'étudier de manière exhaustive et objective le com-portement de tous les individus d'une colonie. En analysant les données spatiales et les interactions sociales de toutes les fourmis de six colonies qui ont été filmées pendant 41 jours, nous montrons que les fourmis d'une même colonie se répartissent en trois groupes: nourrices, patrouilleuses et approvisionneuses. Les fourmis d'un même groupe interagis-sent fréquemment et occupent le même espace à l'intérieur du nid. L'espace propre à un groupe se recoupe très peu avec celui des autres. Chaque groupe est caractérisé par un comportement typique. Les nourrices s'affairent surtout autour du couvain. Les pa-trouilleuses font de fréquents déplacements vers le tas d'ordures, et les approvisionneuses sortent souvent du nid. Les nourrices sont en moyenne plus jeunes que les patrouilleuses qui, à leur tour, sont plus jeunes que les approvisionneuses. De plus, nous montrons que les ouvrières changent de tâche au cours de leur vie, passant de nourrice à patrouilleuse puis à approvisionneuse. En analysant l'activité de chaque fourmi, nous montrons que seulement un tiers des ouvrières d'une colonie présente des rythmes circadiens et que ces rythmes diminuent en moyenne de 42 minutes lorsqu'il y a obscurité constante, ce qui démontre ainsi la présence d'une horloge endogène. De plus, la plupart des approvi¬sionneuses ont une activité rythmique alors que les nourrices et patrouilleuses présentent une activité arythmique, ce qui suggère que la rythmicité est étroitement associée à la tâche. L'arythmie des nourrices et patrouilleuses repose probablement sur une plasticité de l'horloge endogène car des ouvrières de nombreuses espèces font preuve d'une ryth¬micité circadienne lorsqu'elles sont isolées de la colonie. Dans l'ensemble nos résultats révèlent qu'une colonie de fourmis se fonde sur une solide organisation sociale et tem¬porelle malgré son apparence chaotique.
Resumo:
BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.
Resumo:
The shrews of the Sorer araneus group have undergone a spectacular chromosome evolution. The karyotype of Sorer granarius is generally considered ancestral to those of Sorer coronatus and S. araneus. However, a sequence of 777 base pairs of the cytochrome b gene of the mitochondrial DNA (mtDNA) produces a quite different picture: S. granarius is closely related to the populations of S. araneus from the Pyrenees and from the northwestern Alps, whereas S. coronatus and S. araneus from Italy and the southern Alps represent two well-separated lineages. It is suggested that mtDNA and chromosomal evolution are in this case largely independant processes. Whereas mtDNA haplotypes are closely linked to the geographical history of the populations, chromosomal mutations were probably transmitted from one population to another. Available data suggest that the impressive chromosome polymorphism of this group is quite a recent phenomenon.
Resumo:
We investigated the influences of odor exposure on performance and on breathing measures. The task was composed of tracking, short-term memory, and peripheral reaction parts. During rest or while performing the task, 12 participants were exposed to 4 different odors in 2 intensities. The higher intensity of the malodors induced a short-term decrement in mean inspiration flow (Vi/Ti) after stimulus onset and impaired performance in the short-term memory task, as compared with control trials; no effect was found for the positively judged odors. The study suggests that a distractor as simple as a bad smell may pull a person off task, however briefly, and may result in a detriment to performance. Actual or potential applications of this research involve designing or securing tasks in such a way that a brief withdrawal of attention does not have fatal consequences.
Resumo:
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the (143)Nd/(144)Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo (143)Nd/(144)Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 10(1)-10(3) are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, epsilon(Nd) values are often similar within one epsilon(Nd) unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing epsilon(Nd) values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic (143)Nd/(144)Nd incorporated post mortem during diagenesis. Unlike REE patterns, (143)Nd/(144)Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the epsilon(Nd) value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of +/- 1 epsilon(Nd) unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of epsilon(Nd) values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in epsilon(Nd) values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived epsilon(Nd) values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to epsilon(Nd) values, (87)Sr/(86)Sr can help to further constrain the fossil provenance and reworking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Resumo:
The goal of this study was to investigate whether the elastic behavior of conduit arteries of humans or rats is altered as a result of concomitant hypertension. Forearm arterial cross-sectional compliance-pressure curves were determined noninvasively by means of a high precision ultrasonic echo-tracking device coupled to a photoplethysmograph (Finapres system) allowing simultaneous arterial diameter and finger blood pressure monitoring. Seventeen newly diagnosed hypertensive patients with a humeral blood pressure of 163/103 +/- 4.4/2.2 mm Hg (mean +/- SEM) and 17 age- and sex-matched normotensive controls with a humeral blood pressure of 121/77 +/- 3.2/1.9 mm Hg were included in the study. Compliance-pressure curves were also established at the carotid artery of 16-week-old anesthetized spontaneously hypertensive rats (n = 14) as well as Wistar-Kyoto normotensive animals (n = 15) using the same echo-tracking device. In these animals, intra-arterial pressure was monitored in the contralateral carotid artery. Mean blood pressures averaged 197 +/- 4 and 140 +/- 3 mm Hg in the hypertensive and normotensive rats, respectively. Despite the considerable differences in blood pressure, the diameter-pressure and cross-sectional compliance-pressure and distensibility-pressure curves were not different when hypertensive patients or animals were compared with their respective controls. These results suggest that the elastic behavior of a medium size muscular artery (radial) in humans and of an elastic artery (carotid) in rats is not necessarily altered by an increase in blood pressure.
Resumo:
Paleoclimatic reconstructions coupled with species distribution models and identification of extant spatial genetic structure have the potential to provide insights into the demographic events that shape the distribution of intra-specific genetic variation across time. Using the globeflower Trollius europaeus as a case-study, we combined (1) Amplified Fragment Length Polymorphisms, (2) suites of 1000-years stepwise hindcasted species distributions and (3) a model of diffusion through time over the last 24,000 years, to trace the spatial dynamics that most likely fits the species' current genetic structure. We show that the globeflower comprises four gene pools in Europe which, from the dry period preceding the Last Glacial Maximum, dispersed while tracking the conditions fitting its climatic niche. Among these four gene pools, two are predicted to experience drastic range retraction in the near future. Our interdisciplinary approach, applicable to virtually any taxon, is an advance in inferring how climate change impacts species' genetic structures.
Resumo:
AIMS: Recent evidence suggests that cardiac progenitor cells (CPCs) may improve cardiac function after injury. The underlying mechanisms are indirect, but their mediators remain unidentified. Exosomes and other secreted membrane vesicles, hereafter collectively referred to as extracellular vesicles (EVs), act as paracrine signalling mediators. Here, we report that EVs secreted by human CPCs are crucial cardioprotective agents. METHODS AND RESULTS: CPCs were derived from atrial appendage explants from patients who underwent heart valve surgery. CPC-conditioned medium (CM) inhibited apoptosis in mouse HL-1 cardiomyocytic cells, while enhancing tube formation in human umbilical vein endothelial cells. These effects were abrogated by depleting CM of EVs. They were reproduced by EVs secreted by CPCs, but not by those secreted by human dermal fibroblasts. Transmission electron microscopy and nanoparticle tracking analysis showed most EVs to be 30-90 nm in diameter, the size of exosomes, although smaller and larger vesicles were also present. MicroRNAs most highly enriched in EVs secreted by CPCs compared with fibroblasts included miR-210, miR-132, and miR-146a-3p. miR-210 down-regulated its known targets, ephrin A3 and PTP1b, inhibiting apoptosis in cardiomyocytic cells. miR-132 down-regulated its target, RasGAP-p120, enhancing tube formation in endothelial cells. Infarcted hearts injected with EVs from CPCs, but not from fibroblasts, exhibited less cardiomyocyte apoptosis, enhanced angiogenesis, and improved LV ejection fraction (0.8 ± 6.8 vs. -21.3 ± 4.5%; P < 0.05) compared with those injected with control medium. CONCLUSION: EVs are the active component of the paracrine secretion by human CPCs. As a cell-free approach, EVs could circumvent many of the limitations of cell transplantation.
Resumo:
Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
The Polochic-Motagua fault systems (PMFS) are part of the sinistral transform boundary between the North American and Caribbean plates. To the west, these systems interact with the subduction zone of the Cocos plate, forming a subduction-subduction-transform triple junction. The North American plate moves westward relative to the Caribbean plate. This movement does not affect the geometry of the subducted Cocos plate, which implies that deformation is accommodated entirely in the two overriding plates. Structural data, fault kinematic analysis, and geomorphic observations provide new elements that help to understand the late Cenozoic evolution of this triple junction. In the Miocene, extension and shortening occurred south and north of the Motagua fault, respectively. This strain regime migrated northward to the Polochic fault after the late Miocene. This shift is interpreted as a ``pull-up'' of North American blocks into the Caribbean realm. To the west, the PMFS interact with a trench-parallel fault zone that links the Tonala fault to the Jalpatagua fault. These faults bound a fore-arc sliver that is shared by the two overriding plates. We propose that the dextral Jalpatagua fault merges with the sinistral PMFS, leaving behind a suturing structure, the Tonala fault. This tectonic ``zipper'' allows the migration of the triple junction. As a result, the fore-arc sliver comes into contact with the North American plate and helps to maintain a linear subduction zone along the trailing edge of the Caribbean plate. All these processes currently make the triple junction increasingly diffuse as it propagates eastward and inland within both overriding plates.