143 resultados para T helper 1 immune response
Resumo:
Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.
Resumo:
CD4S14; T helper cells are playing critical roles in host defense to pathogens and in the maintenance of immune homeostasis. Naïve CD4S14;T cells, upon antigen-specific recognition, receive signals to differentiate into distinct effector T helper cell subsets characterized by their pattern of cytokine production and specific immune functions. A tight balance between these different subsets ensures proper control of the immune response. There is increasing evidence revealing an important role for Notch signaling in the regulation of CD4S14;T helper cell differentiation or function in the periphery. However, the exact mechanisms involved remain unclear and appear contradictory. In this review, we summarize current knowledge and discuss recent advances in the field to reconcile different views on the role of Notch signaling in the differentiation of functional T helper subsets.
Resumo:
The lymphatic vasculature is important for the regulation of tissue fluid homeostasis, immune response, and lipid absorption, and the development of in vitro models should allow for a better understanding of the mechanisms regulating lymphatic vascular growth, repair, and function. Here we report isolation and characterization of lymphatic endothelial cells from human intestine and show that intestinal lymphatic endothelial cells have a related but distinct gene expression profile from human dermal lymphatic endothelial cells. Furthermore, we identify liprin beta1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, as highly expressed in intestinal lymphatic endothelial cells in vitro and lymphatic vasculature in vivo, and show that it plays an important role in the maintenance of lymphatic vessel integrity in Xenopus tadpoles.
Resumo:
Colour polymorphism in vertebrates is usually under genetic control and may be associated with variation in physiological traits. The melanocortin 1 receptor (Mc1r) has been involved repeatedly in melanin-based pigmentation but it was thought to have few other physiological effects. However, recent pharmacological studies suggest that MC1R could regulate the aspects of immunity. We investigated whether variation at Mc1r underpins plumage colouration in the Eleonora's falcon. We also examined whether nestlings of the different morphs differed in their inflammatory response induced by phytohemagglutinin (PHA). Variation in colouration was due to a deletion of four amino acids at the Mc1r gene. Cellular immune response was morph specific. In males, but not in females, dark nestling mounted a lower PHA response than pale ones. Although correlative, our results raise the neglected possibility that MC1R has pleiotropic effects, suggesting a potential role of immune capacity and pathogen pressure on the maintenance of colour polymorphism in this species.
Resumo:
OBJECTIVE: To describe the effect of HAART on Kaposi sarcoma herpes virus (KSHV) antibody response and viremia among HIV-positive MSM. DESIGN: A follow-up study of 272 HIV-positive MSM (including 22 with Kaposi sarcoma) who first initiated HAART between January 1996 and July 2004 in the Swiss HIV Cohort Study. METHODS: For each individual, two serum samples, one at HAART initiation and another 24 months later, were tested for latent and lytic KSHV antibodies using immunofluorescence assays, and for KSHV viremia using PCR. Factors associated with changes in KSHV antibody titers and viremia were evaluated. RESULTS: At HAART initiation, 69.1 and 75.0% of patients were seropositive to latent and lytic KSHV antibodies, respectively. Seropositivity was associated with the presence of Kaposi sarcoma, older age, lower CD8 cell count and higher CD4/CD8 ratio. Prevalence of KSHV viremia at HAART initiation was 6.4%, being significantly higher among patients with Kaposi sarcoma (35.0%), and those with HIV viral loads 100 000 copies/ml (11.7%) or higher. At 24-month follow-up, geometric mean titers (GMTs) among KSHV seropositive patients increased and antibody seroprevalence was higher. Having Kaposi sarcoma and/or CD4 cell counts less than 50 cells/microl at HAART initiation was associated both with higher probability for antibody titers to increase (including seroconversion) and larger increases in GMTs. Only one of 17 viremic patients at HAART initiation had viremia at 24-month follow-up. CONCLUSION: HAART increases KSHV-specific humoral immune response and clearance of viremia among HIV-infected MSM, consistent with the dramatic protection offered by HAART against Kaposi sarcoma.
Resumo:
Despite advances in the diagnosisand treatment of head and neck cancer,survival rates have not improvedover recent years. New therapeuticstrategies, including immunotherapy,are the subject of extensive research.In several types of tumors, the presenceof tumor infiltrating lymphocytes(TILs), notably CD8+ T cellsand dendritic cells, has been correlatedwith improved prognosis. Moreover,some T cells among TILs havebeen shown to kill tumor cells in vitroupon recognition of tumor-associatedantigens. Tumor associated antigensare expressed in a significant proportionof squamous cell carcinoma ofthe head and neck and apparently mayplay a role in the regulation of cancercell growth notably by inhibition ofp53 protein function in some cancers.The MAGE family CT antigens couldtherefore potentially be used as definedtargets for immunotherapy andtheir study bring new insight in tumorgrowth regulation mechanisms. Between1995 - 2005 54 patients weretreated surgically in our institution forsquamous cell carcinoma of the oralcavity. Patient and clinical data wasobtained from patient files and collectedinto a computerized database.For each patient, paraffin embeddedtumor specimens were retrieved andexpression of MAGE CT antigens,p53, NY-OESO-1 were analyzed byimmunohistochemistry. Results werethen correlated with histopathologicalparameter such as tumor depth,front invasion according to Bryne andboth, local control and disease freesurvival. MAGE-A was expressed in52% of patients. NY-ESO-1 and p53expression was found in 7% and 52%cases respectively. A higher tumordepth was significantly correlatedwith expression of MAGE-Aproteins(p = 0.03). No significant correlationcould be made between the expressionof both p53 andNY-OESO-1 andhistopathological parameters. Expressionof tumor-associated antigendid not seem to impact significantlyon patient prognosis. As does thedemonstration of p53 function inhibitionby CT antigens of MAGE family,our results suggest, that tumor associatedantigens may be implicated in tumorprogression mechanisms. Thishypothesis need further investigationto clarify the relationship betweenhost immune response and local tumorbiology.
Resumo:
Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.
Resumo:
A sex steroid-dependent modulation of the immune function in mammals is accepted, and evidence suggests that while estrogens enhance, androgens inhibit the immune response. The aim of this study was to explore in the adult male rat the effect of either neonatal flutamide (FTM) treatment or prepubertal orchidectomy (ODX) on endocrine markers in the basal condition and peripheral tumor necrosis factor alpha (TNFα) levels during inflammatory stress. For these purposes, (1) 5-day-old male rats were subcutaneously injected with either sterile vehicle alone or containing 1.75 mg FTM, and (2) 25-day-old male rats were sham operated or had ODX. Rats were sacrificed (at 100 days of age) in the basal condition for determination of peripheral metabolite levels. Additional rats were intravenously injected with bacterial lipopolysaccharide (LPS; 25 μg/kg body weight, i.v.) and bled for up to 4 h. Data indicate that (1) ODX increased peripheral glucocorticoid levels and reduced those of testosterone, whereas FTM-treated rats displayed low circulating leptin concentrations, and (2) LPS-induced TNFα secretion in plasma was significantly enhanced in the FTM and ODX groups. Our study supports that neonatal FTM treatment affected adiposity function, and adds data maintaining that androgens have a suppressive role in proinflammatory cytokine release in plasma during inflammation.
Resumo:
Immunotherapy is defined as the treatment of disease by inducing, enhancing, or suppressing an immune response, whereas preventive vaccination is intended to prevent the development of diseases in healthy subjects. Most successful prophylactic vaccines rely on the induction of high titers of neutralizing antibodies. It is generally thought that therapeutic vaccination requires induction of robust T-cell mediated immunity. The diverse array of potential or already in use immunotherapeutic and preventive agents all share the commonality of stimulating the immune system. Hence, measuring those vaccination-induced immune responses gives the earliest indication of vaccine take and its immune modulating effects.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Resumo:
BACKGROUND: Natalizumab is used to prevent relapses and progression of disability in patients with multiple sclerosis but has been associated with progressive multifocal leukoencephalopathy (PML). We aimed to better understand the associations between JC virus, which causes PML, and natalizumab treatment. METHODS: We prospectively assessed patients with multiple sclerosis who started treatment with natalizumab. Blood and urine samples were tested for the presence of JC virus DNA with quantitative real-time PCR before treatment and at regular intervals after treatment onset for up to 18 months. At the same timepoints, by use of proliferation and enzyme-linked immunospot assays, the cellular immune responses against JC virus, Epstein-Barr virus, cytomegalovirus, myelin oligodendrocyte glycoprotein, and myelin oligodendrocyte basic protein (MOBP) were assessed. Humoral immune response specific to JC virus was assessed with an enzyme immunoassay. The same experiments were done on blood samples from patients with multiple sclerosis before and 10 months after the start of interferon beta treatment. FINDINGS: We assessed 24 patients with multiple sclerosis who received natalizumab and 16 who received interferon beta. In patients treated with natalizumab, JC virus DNA was not detected in the blood at any timepoint. However, JC virus DNA was present in the urine of six patients and in most of these patients the concentrations of JC virus DNA were stable over time. Compared with pretreatment values, the cellular immune response was increased to cytomegalovirus at 6 months, to JC virus at 1, 9, and 12 months, and to Epstein-Barr virus and MOBP at 12 months. Humoral responses remained stable. There were no increases in cellular immune responses specific to the viruses or myelin proteins in the 16 patients treated with interferon beta. INTERPRETATION: Natalizumab increases cellular immune responses specific to viruses and myelin proteins in the peripheral blood after 1 year, without evidence of viral reactivation. FUNDING: Swiss National Foundation, Swiss Society for Multiple Sclerosis, and Biogen Dompé.
Resumo:
Psoriasis is one of the most common human inflammatory skin diseases characterised by hyperproliferation and aberrant differentiation of keratinocytes. The trigger of the typical epidermal changes seen in psoriasis was considered to be a dysregulated immune response with Th-1/Tc1 cells playing a central role. Recent studies have provided new insights into psoriasis pathogenesis in defining intraepidermal alpha(1)beta(1)+ T cells as key effectors driving keratinocyte changes. Critical roles for IFN-alpha secreted by plasmacytoid dendritic cells and the IL-23/Th-17 axis were postulated. Initially, these subsequent stages are at least partially driven by the endogenous antimicrobial peptide LL37 that converts inert self-DNA into a potent trigger of interferon production by binding and delivering the DNA into plasmacytoid dendritic cells to trigger toll-like receptor 9. As LL37 is expressed by keratinocytes upon various stimuli, keratinocytes might regain momentum as instigators of an aberrant immune response which then precedes the characteristic changes in the epidermis. Data from these new studies indicate a complex interplay between keratinocytes overexpressing antimicrobial peptides and immune cells driving epidermal hyperproliferation and aberrant keratinocyte differentiation in the pathogenesis of psoriasis.
Resumo:
Now that the acquired immunodeficiency syndrome (AIDS) epidemic is well into its second decade, it has become evident that a small percentage (approximately 5%) of HIV-infected individuals do not experience progression of HIV disease even after several years of being infected with HIV. These individuals have been designated as 'long term non-progressors' (LTNPs). From a virologic standpoint, these LTNPs have low viral burden in mononuclear cells, but persistent virus replication as manifested by chronic and generally low levels of plasma viremia. From an immunologic standpoint, immune functions including CD8(+) T-cell- and CD4(+) T-cell-mediated functions are preserved. In addition, they show a vigorous humoral immune response. More importantly, lymphoid tissue structure and function are preserved in LTNPs. Despite persistent low-level virus replication and chronic stimulation of the immune system, immune activation is qualitatively and quantitatively different in LTNPs compared to that observed in HIV-infected individuals whose HIV disease has progressed.
Resumo:
Mouse models of Leishmania major infection have shown that a predominant CD4(+) T helper type 1 cell (Th1) response leads to protection, while T helper type 2 cell (Th2) predominance confers susceptibility. Dendritic cells (DCs) are antigen-presenting cells that orchestrate the T cell response. The immune response to L. major involves direct antigen presentation by migrating DCs or transfer of antigens to resident DCs to prime T cells. In this review, we discuss the timing and consequences of antigen presentation by DC subsets and how this affects Leishmania susceptibility. We propose a model where dermal DCs and Langerhans cells play a role early in infection, followed by inflammatory monocyte-derived DC and lymph node (LN)-resident DCs at later time points of infection to establish the resistant Th1 response.