239 resultados para Solvent resistant NF membranes
Resumo:
OBJECTIVES: Methicillin resistance in staphylococci is mediated by the mecA gene, which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is responsible for vertical and horizontal transfer of methicillin resistance. Horizontal transfer implies first SCCmec excision from the chromosome. Site-specific excision is catalysed by the Ccr recombinases, which are encoded by ccrAB genes located on the cassette. The aim of this study is to determine the promoter activity of ccrAB genes in individual cells of methicillin-resistant Staphylococcus aureus (N315, COL and MW2) and Staphylococcus epidermidis (RP62A). One mutant cured of its SCCmec (N315EX) was also used. Exposure to various stresses was included in the study. METHODS: For each strain, translational promoter-green fluorescent protein (gfp) fusions were used to assess the levels of ccr promoter activity in individual cells. Analyses were performed using epifluorescence microscopy and flow cytometry. RESULTS: ccr promoter activity was observed in only a small percentage of cell populations. This 'bistable' phenotype was strain dependent (GFP was expressed in N315 and RP62A, but not in COL and MW2) and growth dependent (GFP-expressing cells decreased from approximately 3% to 1% between logarithmic and stationary growth phases). The ccr promoter of strain N315 displayed normal promoter activity when expressed in SCCmec-negative N315EX. Likewise, the ccr promoter of strain COL (which was inactive in COL) showed normal N315-like activity when transformed into N315 and N315EX. CONCLUSIONS: SCCmec excision operates through bistability, favouring a small fraction of cells to 'sacrifice' their genomic islands for transfer, while the rest of the population remains intact. Determinants responsible for the activity of the ccr promoter were not located on SCCmec, but were elsewhere on the genome. Thus, the staphylococcal chromosome plays a key role in determining SCCmec stability and transferability.
Resumo:
In obstetrics, premature rupture of the membranes (PROM) is a frequent observation which is responsible for many premature deliveries. PROM is also associated with an increased risk of fetal and maternal infections. Early diagnosis is mandatory in order to decrease such complications. Despite that current biological tests allowing the diagnosis of PROM are both sensitive and specific, contamination of the samples by maternal blood can induce false positive results. Therefore, in order to identify new potential markers of PROM (present only in amniotic blood, and absent in maternal blood), proteomic studies were undertaken on samples collected from six women at terms (pairs of maternal plasma and amniotic fluid) as well as on four samples of amniotic fluid collected from other women at the 17(th) week of gestation. All samples (N = 16) were analyzed by two-dimensional (2-D) high-resolution electrophoresis, followed by sensitive silver staining. The gel images were studied using bioinformatic tools. Analyses were focused on regions corresponding to pI between 4.5 and 7 and to molecular masses between 20 and 50 kDa. In this area, 646 +/- 113 spots were detected, and 27 spots appeared to be present on the gels of amniotic fluid, but were absent on those of maternal plasma. Nine out of these 27 spots were also observed on the gels of the four samples of amniotic fluids collected at the 17(th) week of pregnancy. Five of these 9 spots were unambiguously detected on preparative 2-D gels stained by Coomassie blue, and were identified by mass spectrometry analyses. Three spots corresponded to fragments of plasma proteins, and 2 appeared to be fragments of proteins not known to be present in plasma. These 2 proteins were agrin (SWISS-PROT: O00468) and perlecan (SWISS-PROT: P98160). Our results show that proteomics is a valuable approach to identify new potential biological markers for future PROM diagnosis.
Resumo:
Bowel diseases reveal the complex interplay of sensing and signalling pathways in maintaining healthy homeostasis of the intestine. Recent studies of the xenobiotic nuclear receptor, pregnane X receptor and the inflammatory mediator nuclear transcription factor kappaB (NF-kappaB) reveal a functional link between xenobiotic neutralization and inflammation and explain how certain xenobiotics can affect the immune response. Furthermore, another nuclear receptor, peroxisome proliferator-activated receptor gamma (PPAR gamma) has been shown to produce beneficial effects in experimental inflammatory bowel diseases by repression of NF-kappaB thereby reducing inflammation, whilst its close relative PPAR beta/delta appears at a central position in signalling pathways involved in the progression of colon cancer. Recently accumulated knowledge on the action of these nuclear receptors and NF-kappaB in intestinal homeostasis may provide the rationale for the development of innovative treatment strategies with selective receptor modulators.
Resumo:
The signaling pathway controlling antigen receptor-induced regulation of the transcription factor NF-kappa B plays a key role in lymphocyte activation and development and the generation of lymphomas. Work of the past decade has led to dramatic progress in the identification and characterization of new players in the pathway. Moreover, novel enzymatic activities relevant for this pathway have been discovered, which represent interesting drug targets for immuno-suppression or lymphoma treatment. Here, we summarize these findings and give an outlook on interesting open issues that need to be addressed in the future.
Resumo:
We describe the case of a depressive patient who was a rapid metabolizer of CYP2D6 substrates and a heavy smoker, and who did not respond to several courses of treatment with antidepressants, as a result of unusually low drug-plasma levels. During hospitalization, he did not improve after treatment with clomipramine (150-225 mg/day during three weeks), but showed a response within four days after addition of fluvoxamine (100 mg/day). Plasma levels of clomipramine and desmethylclomipramine changed from 58 ng/ml and 87 ng/ml to 223 ng/ml and 49 ng/ml respectively one week after addition of fluvoxamine. Present knowledge of the role of cytochrome P-450 isozymes, such as CYP1A2, CYP2C19, CYP2D6, and CYP3A4, in the metabolism of psychotropic drugs as well as therapeutic drug-plasma level monitoring may thus help to determine individual treatment.
Resumo:
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.
Resumo:
Iclaprim is a novel diaminopyrimidine antibiotic that is active against methicillin-resistant Staphylococcus aureus (MRSA). However, it is known that the activity of diaminopyrimidines against S. aureus is antagonized by thymidine through uptake and conversion to thymidylate by thymidine kinase. Unlike with humans, for whom thymidine levels are low, thymidine levels in rodents are high, thus precluding the accurate evaluation of iclaprim efficacy in animal models. We have studied the bactericidal activity of iclaprim against an isogenic pair of MRSA isolates, the wild-type parent AW6 and its thymidine kinase-deficient mutant AH1252, in an in vitro fibrin clot model. Clots, which were aimed at mimicking vegetation structure, were made from human or rat plasma containing either the parent AW6 or the mutant AH1252, and they were exposed to homologous serum supplemented with iclaprim (3.5 microg/ml), trimethoprim-sulfamethoxazole (TMP-SMX; 8/40 microg/ml), vancomycin (40 microg/ml), or saline, each of which was added one time for 48 h. In rat clots, iclaprim and TMP-SMX were bacteriostatic against the parent, AW6. In contrast, they were bactericidal (> or = 3 log10 CFU/clot killing of the original inoculum) against the mutant AH1252. Vancomycin was the most active drug against AW6 (P < 0.05), but it showed an activity similar those of iclaprim and TMP-SMX against AH1252. In human clots, iclaprim was bactericidal against both AW6 and AH1252 strains and was as effective as TMP-SMX and vancomycin (P > 0.05). Future studies of animals using simulated human kinetics of iclaprim and thymidine kinase-deficient MRSA, which eliminate the thymidine-induced confounding effect, are warranted to support the use of iclaprim in the treatment of severe MRSA infections in humans.
Resumo:
The new 8-methoxyquinolone moxifloxacin was tested against two ciprofloxacin-susceptible Staphylococcus aureus strains (strains P8 and COL) and two ciprofloxacin-resistant derivatives of strain P8 carrying a single grlA mutation (strain P8-4) and double grlA and gyrA mutations (strain P8-128). All strains were resistant to methicillin. The MICs of ciprofloxacin and moxifloxacin were 0.5 and 0.125 mg/liter, respectively, for P8; 0.25 and 0.125 mg/liter, respectively, for COL; 8 and 0.25 mg/liter, respectively, for P8-4; and >or=128 and 2 mg/liter, respectively, for P8-128. In vitro, the rate of spontaneous resistance of P8 and COL was 10(-7) on agar plates containing ciprofloxacin at two times the MIC, whereas it was <or=10(-10) on agar plates containing moxifloxacin at two times the MIC. Rats with experimental aortic endocarditis were treated with doses of drugs that simulate the kinetics in humans: moxifloxacin, 400 mg orally once a day; ciprofloxacin, 750 mg orally twice a day; or vancomycin, 1 g intravenously twice a day. Treatment was started either 12 or 24 h after infection and lasted for 3 days. Moxifloxacin treatment resulted in culture-negative vegetations in a total of 20 of 21 (95%) rats infected with P8, 10 of 11 (91%) rats infected with COL, and 19 of 24 (79%) rats infected with P8-4 (P < 0.05 compared to the results for the controls). In contrast, ciprofloxacin treatment sterilized zero of nine (0%) vegetations infected with first-level resistant mutant P8-4. Vancomycin sterilized only 8 of 15 (53%), 6 of 11 (54%), and 12 of 23 (52%) of the vegetations, respectively. No moxifloxacin-resistant derivative emerged among these organisms. However, moxifloxacin treatment of highly ciprofloxacin-resistant mutant P8-128 failed and selected for variants for which the MIC increased two times in 2 of 10 animals. Thus, while oral moxifloxacin might deserve consideration as treatment for staphylococcal infections in humans, caution related to its use against strains for which MICs are borderline is warranted.
Resumo:
A novel monoclonal antibody, M7, is described, that reacts on Western blots with the large subunit of the neurofilament triplet proteins (NF-H) and with striated muscle myosin of Xenopus laevis. Enzymatically digested neurofilament and myosin proteins revealed different immunoreactive peptide fragments on Western blots. Therefore, the antibody must react with immunologically related epitopes common to both proteins. Immunohistochemistry showed staining of large and small axons in CNS and PNS, and nerves could be followed into endplate regions of skeletal muscles. These muscles were characterized by a striated immunostaining of the M-lines. Despite the crossreactivity of M7 with NF-H and muscle myosin, this antibody may be a tool to study innervation of muscle fibers, and to define changes in the neuromuscular organization during early development and metamorphosis of tadpoles.
Resumo:
RESUME Staphylococcus aureus est un important pathogène à gram-positif, à la fois responsable d'infections nosocomiales et communautaires. Le S. aureus résistant à la méthicilline est intrinsèquement résistant aux bêta-lactamines, inhibiteurs de la synthèse de la paroi bactérienne, grâce à une enzyme nouvellement acquise, la protéine liant la pénicilline 2A, caractérisée par une faible affinité pour ces agents et pouvant poursuivre la synthèse de la paroi, alors que les autres enzymes sont bloquées. Ce micro-organisme a également développé des résistances contre quasiment tous les antibiotiques couramment utilisés en clinique. Parallèlement au développement de molécules entièrement nouvelles, il peut être utile d'explorer d'éventuelles caractéristiques inattendues de médicaments déjà existants, par exemple en les combinant, dans l'espoir d'un potentiel effet synergique. Comprendre les mécanismes de tels effets synergiques pourrait contribuer à la justification de leur utilisation clinique potentielle. Récemment, un effet synergique contre le S. aureus résistant à la méthicilline a été décrit entre la streptogramine quinupristine-datfopristine et les bêta-lactamines, aussi bien in vitro qu'in vivo. Le présent travail a pour but de proposer un modèle pour le mécanisme de cette interaction positive et de l'étendre à d'autres classes d'antibiotiques. Premièrement, un certain nombre de méthodes microbiologiques ont permis de mieux cerner la nature de cette interaction, en montrant qu'elle agissait spécifiquement sur le S. aureus résistant à la méthicilline et qu'elle était restreinte à l'association entre inhibiteurs de la synthèse des protéines et bêta-lactamines. Deuxièmement, L'observation de l'influence des inhibiteurs de la synthèse des protéines sur la machinerie de la paroi bactérienne, c'est-à-dire sur l'expression des protéines liant la pénicilline, responsables de la synthèse du peptidoglycan, a montré une diminution de la quantité de ta protéine liant la pénicilline 2, connue pour posséder une activité de transglycosylation, indispensable au bon fonctionnement de la protéine liant la pénicilline 2A, responsable de la résistance à la méthicilline. Troisièmement, l'analyse fine de la composition du peptidoglycan extrait de bactéries, avant ou après traitement par des inhibiteurs de la synthèse des protéines, a montré des altérations corrélant avec leur capacité à agir en synergie avec les bêta-lactamines contre S. aureus résistant à ta méthicilline. Ces altérations dans les muropeptides pourraient représenter une signature de la diminution de la quantité de la protéine liant la pénicilline 2. Le modèle mécanistique retenu considère que les inhibiteurs de la synthèse des protéines pourraient diminuer l'expression de la protéine Liant la pénicilline 2, indispensable à la résistance à la méthiciltine, et que ce déséquilibre dans les enzymes synthétisant la paroi bactérienne pourrait générer une signature dans les muropeptides. SUMMARY Staphylococcus aureus is a major gram-positive pathogen causing both hospital-acquired and community-acquired infections. Methicillin- resistant Staphylococcus aureus is intrinsically resistant to the cell wall inhibitors beta-lactams by virtue of a newly acquired cell-wall-building enzyme, tow-affinity penicillin-binding protein 2A, which can build the wall when other penicillin-binding proteins are blocked. Moreover, the microorganism has developed resistance to virtually all non-experimental antibiotics. In addition of producing entirely new molecules, it is useful to explore unexpected features of existing drugs, for example by using them in combination, expecting drug synergisms. Understanding the mechanisms of such synergisms would help justify their putative clinical utilization. Recently, a synergism between the streptogramin quinupristin-dalfopristin and beta-lactams was reported against methicillin-resistant S. aureus, both in vitro and in vivo. The present work intends to propose a model for the mechanism of this positive interaction and to extend it to other drug classes. First, microbiological experimentation helped better defining the nature of this interaction, restricting it to methicillin-resistant S. aureus, and to the association of protein synthesis inhibitors with beta-lactams. Second, the observation of inhibitors of protein synthesis influence on the cell-wall-building machinery, i.e. on the expression of penicillin-binding proteins responsible for peptidoglycan synthesis, showed a decrease in the amount of penicillin-binding protein 2, known to provide a transglycosylase activity for glycan chain elongation, indispensable for the functionality of the low-affinity penicillin-binding protein 2A responsible for methicillin resistance. Third, the fine analysis of the peptidoglycan composition purified from bacteria before or after treatment with inhibitors of protein synthesis showed alterations that correlated with their ability to synergize with beta-lactams against methicillin-resistant S. aureus. These muropeptide alterations could be the signature of decrease in the amount of penicillin-binding protein 2. The retained mechanistic model is that inhibitors of protein synthesis could decrease the expression of penicillin-binding protein 2, wich is indispensable for methicillin-resistance, and that this imbalance in cell-wall-building enzymes could generate a muropeptide signature.
Resumo:
Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.
Resumo:
Transcription factors of the NF-kappaB/Rel family are important mediators of extracellular signals. Their implication in positive selection of thymocytes is suggested by a defective thymic development in transgenic mice that over-express IkappaB in thymocytes. These mice exhibit an accumulation of an unusually prominent population of TCRhigh/CD4/CD8 double positive cells in the thymus and a dramatic reduction of CD4+ and CD8+ cells in the periphery. The present study addresses the role of NF-kappaB in survival and differentiation processes of maturing thymocytes using IkappaB/bcl-2 and IkappaB/HY double-transgenic mice. Neither the introduction of the anti-apoptosis gene bcl-2 nor the positively selecting background in female HY transgenic mice resulted in a rescue of the maturational defects observed in the thymus of IkappaB transgenic mice. Thus, rather than promoting survival the main role of NF-kappaB/Rel proteins during positive selection of thymocytes appears to be the mediation of differentiation signals.
Resumo:
This study investigates faecal indicator bacteria (FIB), multiple antibiotic resistant (MAR), and antibiotic resistance genes (ARGs), of sediment profiles from different parts of Lake Geneva (Switzerland) over the last decades. MARs consist to expose culturable Escherichia coli (EC) and Enterococcus (ENT) to mixed five antibiotics including Ampicillin, Tetracycline, Amoxicillin, Chloramphenicol and Erythromycin. Culture-independent is performed to assess the distribution of ARGs responsible for, β-lactams (blaTEM; Amoxicillin/Ampicillin), Streptomycin/Spectinomycin (aadA), Tetracycline (tet) Chloramphenicol (cmlA) and Vancomycin (van). Bacterial cultures reveal that in the sediments deposited following eutrophication of Lake Geneva in the 1970s, the percentage of MARs to five antibiotics varied from 0.12% to 4.6% and 0.016% to 11.6% of total culturable EC and ENT, respectively. In these organic-rich bacteria-contaminated sediments, the blaTEM resistant of FIB varied from 22% to 48% and 16% to 37% for EC and ENT respectively, whereas the positive PCR assays responsible for tested ARGs were observed for EC, ENT, and total DNA from all samples. The aadA resistance gene was amplified for all the sediment samples, including those not influenced by WWTP effluent water. Our results demonstrate that bacteria MARs and ARGs highly increased in the sediments contaminated with WWTP effluent following the cultural eutrophication of Lake Geneva. Hence, the human-induced changing limnological conditions highly enhanced the sediment microbial activity, and therein the spreading of antibiotic resistant bacteria and genes in this aquatic environment used to supply drinking water in a highly populated area. Furthermore, the presence of the antibiotic resistance gene aadA in all the studied samples points out a regional dissemination of this emerging contaminant in freshwater sediments since at least the late nineteenth century.
Resumo:
Résumé : Les jasmonates (JA), une famille d'hor1none végétale, jouent un rôle central dans la réponse à la blessure, et aux attaques d'insectes et de pathogènes. Les JA sont principalement dérivés d'un acide gras, l'acide linolénique. L'addition par une lipoxygénase d'une molécule d'oxygène à l'acide linolénique initie la synthèse de JA. Cependant les mécanismes régulant l'activation de la biosynthèse de JA ne sont pas encore connus. C'est pour cette raison que dans ce travail, nous avons caractérisé chez Arabidopsis thaliana (l'Arabette des Dames) un mutant fou2 dont l'activité lipoxygénase est plus élevée que celle d'une plante sauvage. Les niveaux de JA sont constitutivement plus élevés et l'activation de la synthèse de JA après blessure est fortement plus induite chez fou2 que chez le type sauvage. En outre, fou2 est plus résistant au pathogène Botrytis cinerea et à la chenille Spodoptera littoralis. Afin de comprendre quel mécanisme chez fou2 génére ce phénotype, nous avons cloné le gène responsable du phénotype de fou2. Le mutant fou2 porte une mutation dans le gène d'un canal à deux pores transportant probablement du potassium, du lumen de la vacuole végétale vers le compartiment cytosolique. L'analyse du protéome de fou2 a permis d'identifier une expression plus élevée de sept protéines régulées par les JA ou le stress. La découverte de l'implication d'un canal dans le phénotype de fou2 renforce l'hypothèse que les flux de cations pourraient être impliqués dans les étapes précoces de la synthèse des JA. Nous avons également étudié le protéome et la physiologie d'une feuille blessée, Pour évaluer les changements d'expression protéique en réponse à la blessure et contrôlés par les JA, nous avons quantifié l'expression de 5937 protéines chez une plante d'Arabidopsis sauvage et chez un mutant incapable de synthétiser des JA. Parmi ces 5937 protéines, nous avons identifié 99 protéines régulées par la blessure chez le type sauvage. Nous avons observé pour 65% des protéines dont l'expression protéique changeait après blessure une bonne corrélation entre la quantité de transcrits et de protéines. Plusieurs enzymes de la voie des chorismates impliquées dans la biosynthèse des acides aminés phénoliques étaient induites par les JA après blessure. Une quantification des acides aminés a montré que les niveaux d'acides aminés phénoliques augmentaient significativement après blessure. La blessure induisait aussi des changements dans l'expression de protéines impliquées dans la réponse au stress et particulièrement au stress oxydatif. Nous avons quantifié l'état réduit et oxydé du glutathion, un tripeptide qui, sous sa forme réduite, est l'antioxydant majeur des cellules. Nous avons trouvé une quantité significativement plus élevée de glutathion oxydé chez le type sauvage blessé que chez la plante aus blessée. Ce résultat suggère que la génération d'un stress oxydatif et la proportion relative de glutathions réduits et oxydés sont contrôlés par les JA après blessure. Abstract : Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri?unsaturated fatty acid a-linolenic-acid (18:3). Addition of an oxygen molecule to 18:3 by 13-lipoxygenases (13-LOX) initiates JA biosynthesis. Actually components regulating the activation of JA biosynthesis are poorly defined. Therefore we characterized in Arabidopsis thaliana the fatty acid Qxygenation upregulated 2 (fou2) mutant, which was previously isolated in a screen for mutants with an enhanced 13-LOX activity. As a consequence of this increased 13-LOX activity, JA levels in fou2 are higher than in wild type (WT) and wounding strongly increased JA biosynthesis compared to WT. fou2 was more resistant to the fungus Botrytis cinerea and the generalist caterpillar Spodaptera littomlis, The fou2 mutant carries a missense mutation in the Two Pore Channel 1 gene (TPCJ), which encodes a vacuolar cation channel transporting probably K* into the cytosol. Patchclamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA- inducible proteins. The discovery of the implication of a channel in the fou2 phenotype strenghtens the hypothesis that cation fluxes might be implicated in early steps of JA synthesis. We further concentrated on the proteome and leaf physiology in the region proximal to wounds in Arabidopsis using the WT and the aos JA-biosynthesis deficient mutant in order to find JA- induced proteins changes. We used two successive proteomic methods to assess protein changes in response to wounding Arabidopsis leaves, two dimensional electrophoresis (2DE) and linear trap quadrupole ion-trap mass spectrometry. In total 5937 proteins were quantified. We identified 99 wound-regulated proteins in the WT. Most these proteins were also wound-regulated at the transcript level showing a good correlation between transcript and protein abundance. We identified several wound-regulated enzymes involved in amino acid biosynthesis and confirmed this result by amino acid quantification. Proteins involved in stress reponses were upregulated, particularly in redox species regulation. We found a significantly higher quantity of oxidized glutathione in wounded WT relative to wounded aos leaves. This result suggests that levels of reduced glutathione are controlled by JA after wounding.
Resumo:
Levofloxacin is the L isomer of ofloxacin, a racemic mixture in which the L stereochemical form carries the antimicrobial activity. Levofloxacin is more active than former quinolones against gram-positive bacteria, making it potentially useful against such pathogens. In this study, levofloxacin was compared to ciprofloxacin, flucloxacillin, and vancomycin for the treatment of experimental endocarditis due to two methicillin-susceptible Staphylococcus aureus (MSSA) and two methicillin-resistant S. aureus (MRSA) isolates. The four test organisms were susceptible to ciprofloxacin, the levofloxacin MICs for the organisms were low (0.12 to 0.25 mg/liter), and the organisms were killed in vitro by drug concentrations simulating both the peak and trough levels achieved in human serum (5 and 0.5 mg/liter, respectively) during levofloxacin therapy. Rats with aortic endocarditis were treated for 3 days. Antibiotics were injected with a programmable pump to simulate the kinetics of either levofloxacin (350 mg orally once a day), ciprofloxacin (750 mg orally twice a day), flucloxacillin (2 g intravenously four times a day), or vancomycin (1 g intravenously twice a day). Levofloxacin tended to be superior to ciprofloxacin in therapeutic experiments (P = 0.08). More importantly, levofloxacin did not select for resistance in the animals, in contrast to ciprofloxacin. The lower propensity of levofloxacin than ciprofloxacin to select for quinolone resistance was also clearly demonstrated in vitro. Finally, the effectiveness of this simulation of oral levofloxacin therapy was at least equivalent to that of standard treatment for MSSA or MRSA endocarditis with either flucloxacillin or vancomycin. This is noteworthy, because oral antibiotics are not expected to succeed in the treatment of severe staphylococcal infections. These good results obtained with animals suggest that levofloxacin might deserve consideration for further study in the treatment of infections due to ciprofloxacin-susceptible staphylococci in humans.