73 resultados para Skew-Symmetric Torsion
Resumo:
Dans la th´eorie des repr´esentations modulaires des groupes finis, les modules d?endo-permutation occupent une place importante. En e_et, c?est le r?ole jou´e par ces modules dans l?analyse de la structure de certains modules simples pour des groupes finis p-nilpotents, qui a amen´e E. Dade `a en introduire le concept, en 1978. Quelques ann´ees plus tard, L. Puig a d´emontr´e que la source de n?importe quel module simple pour un groupe fini p-r´esoluble quelconque est un module d?endo-permutation. Plus r´ecemment, on s?est rendu compte que ces modules interviennent aussi dans l?analyse locale des cat´egories d´eriv´ees et dans l?´etude des syst`emes de fusion. La situation que l?on consid`ere est la suivante. On se donne un nombre premier p, un p-groupe fini P, un corps alg´ebriquement clos k de caract´eristique p et on veut d´eterminer tous les kP-modules d?endo-permutation couverts ind´ecomposables de type fini, c?est-`a-dire tous les kP-modules ind´ecomposables de type fini, tels que leur alg`ebre d?endomorphismes est un kP-module de permutation ayant un facteur direct trivial. On d´efinit une relation d?´equivalence sur l?ensemble de ces kP-modules et le produit tensoriel des modules induit une structure de groupe ab´elien sur l?ensemble des classes d?´equivalence. On appelle ce groupe, le groupe de Dade de P. Ainsi, classifier les modules d?endo-permutation couverts revient `a d´eterminer le groupe de Dade de P. Le groupe de Dade d?un p-groupe fini arbitraire est encore inconnu, bien qu?E. Dade, en 1978, ´etait d´ej`a parvenu `a la classification dans le cas o`u P est ab´elien. La premi`ere partie de ce travail de th`ese est consacr´ee au probl`eme de la classification dans le cas g´en´eral et r´esoud la question dans le cas de deux familles de p-groupes finis, `a savoir celle des p-groupes m´etacycliques, pour un nombre premier p impair, et celle des 2-groupes extrasp´eciaux, de la forme D8 _ · · · _ D8. Ces deux choix ont ´et´e motiv´es par le fait que ces groupes sont "presque" ab´eliens. De plus, certains r´esultats sur la structure du groupe de Dade d?un p-groupe fini quelconque rendent le groupe de Dade des groupes de ces deux familles plus simple `a ´etudier. Dans un deuxi`eme temps, nous nous sommes int´eress´es `a deux occurrences de ces modules dans la th´eorie de la repr´esentation des groupes finis, c?est-`a-dire `a deux raisons qui motivent leur ´etude. Ainsi, nous avons r´ealis´e des modules d?endo-permutation comme sources de modules simples. En particulier, il s?av`ere que, dans le cas d?un nombre premier p impair, tout module d?endo-permutation ind´ecomposable dont la classe est un ´el´ement de torsion dans le groupe de Dade est la source d?un module simple. Finalement, nous avons d´etermin´e, parmi tous les modules d?endo-permutation connus actuellement, lesquels poss`edent une r´esolution de permutation endo-scind´ee. Nous sommes arriv´es `a la conclusion que les seuls modules d?endo-permutation qui n?ont pas de r´esolution de permutation endo-scind´ee sont les modules "exceptionnels" apparaissant pour un 2-groupe de quaternions g´en´eralis´es.<br/><br/>In modular representation theory, endo-permutation modules occupy an important position. Indeed, the role that these modules play, in the analysis of the structure of some particular simple modules for finite p-nilpotent groups, induced E. Dade, in 1978, to give them their current name. A few years later, L. Puig proved that the source of any simple module for any finite psolvable group is an endo-permutation module. More recently, the occurrence of endo-permutation modules has also been noticed in the local analysis of splendid equivalences between derived categories and in the study of fusion systems. We consider the following situation. Given a prime number p, a finite pgroup P and an algebraically closed field k of characteristic p, we are looking for all finitely generated indecomposable capped endo-permutation kP-modules. That is, all finitely generated indecomposable kP-modules such that their endomorphism algebra is a permutation kP-module having a trivial direct summand. Then, we define an equivalence relation on the set of all isomorphism classes of such modules, and it turns out that the tensor product (over k) induces a structure of abelian group on this set. We call this group the Dade group of P. Hence, classifying all indecomposable finitely generated capped endo-permutation kPmodules is equivalent to determining the Dade group of P. At present, the Dade group of an arbitrary finite p-group is still unknown. However, E. Dade computed the Dade group of all finite abelian p-groups, in 1978 already. The first part of this doctoral thesis is concerned with the problem of the classification in the general case and solve it in the case of two families of finite p-groups, namely the metacyclic p-groups, for an odd prime number p, and the extraspecial 2-groups of the shape D8 _· · ·_D8. These two choices have been motivated by the fact that these groups are not far from being abelian. Moreover, some general results concerning the Dade group of arbitrary finite p-groups suggest that the Dade group of the groups belonging to these two families is easier to study. In the second part of this thesis, we have been looking at two particular occurrences of these modules in representation theory of finite groups which motivate the interest of their classification. Thus, we realised endo-permutation modules as sources of simple modules. In particular, it turns out that, in case p is an odd prime, any indecomposable module whose class in the Dade group is a torsion element is the source of some simple module. Finally, we considered all the modules we know at present and determined which ones have an endo-split permutation resolution. We could then conclude that all but the "exceptionnal" modules occurring in the generalized quaternion case have an endo-split permutation resolution.<br/><br/>"Module d?endo-permutation" n?est pas le nom d?une maladie exotique contagieuse (du moins pas `a ma connaissance), comme vous pourriez peut-?etre l?imaginer si vous faites partie des personnes qui croient que le titre de docteur n?est destin´e qu?aux m´edecins. Dans ce cas, il se peut que le sujet dont il est question ici vous cause quelques naus´ees et r´eveille de douloureux souvenirs d?´ecole, car un module d?endo-permutation est un objet math´ematique, alg´ebrique, plus pr´ecis´ement. Ce concept a ´et´e introduit il y a un quart de si`ecle, de l?autre c?ot´e de l?Atlantique, et il s?est r´ev´el´e su_samment int´eressant pour qu?aujourd?hui il ait franchi bien des fronti`eres, celles de l?alg`ebre y compris. Mais de quoi s?agit-il ? Si vous entendez le terme "endo-permutation" probablement pour la premi`ere fois, ce n?est certainement pas le cas pour celui de "module". Cependant, sa d´efinition dans le pr´esent contexte ne co¨ýncide avec aucune de celles figurant dans les dictionnaires ordinaires. Les personnes qui ont d´ej`a entendu parler de Frobenius, Burnside, Schur, ou encore Brauer, pourront vous dire qu?un module est une repr´esentation. "De quoi ?" vous demanderezvous. "Un spectacle de marionnettes, peut-?etre ?" Bien s?ur que non ! Un module d?endo-permutation est une repr´esentation particuli`ere de certains groupes finis, o`u un groupe n?est pas un groupe de rock, comme vous pouvez vous en douter, mais d´esigne un objet math´ematique connu par tous les ´etudiants en sciences au terme de leur premi`ere ann´ee universitaire (en th´eorie, du moins). La "popularit´e" de la notion de groupe, fini ou non, est due au fait que les groupes sont fr´equemment utilis´es, aussi bien dans le domaine abstrait des math´ematiques, que dans le monde r´eel des physiciens, chimistes et autres biologistes (pour ne citer qu?eux). "Mais comment peut-on utiliser concr`etement ces objets invisibles ?" vous demanderez-vous alors. Et bien, justement, en les consid´erant par l?interm´ediaire de leurs repr´esentations, c?est-`a-dire en leur associant des matrices, de fa¸con plus ou moins naturelle. Or, comme il y a "beaucoup trop" de matrices pour un groupe donn´e, elles sont classifi´ees selon certaines de leurs propri´et´es, ce qui permet de les r´epertorier dans diverses familles (celle des modules d?endo-permutation, par exemple). Un groupe est ainsi rendu "concret", car les donn´ees matricielles sont manipulables par tous les scienti- fiques (et leurs ordinateurs), qui peuvent alors les utiliser dans leurs recherches, afin de contribuer au progr`es de la science. En toute franchise, c?est bien loin de ces soucis terre-`a-terre que ce travail de th`ese sur la classification des modules d?endo-permutation a ´et´e accompli. En fait, quitte `a choquer certaines ?ames sensibles, sa r´ealisation est surtout due au caract`ere ´epicure de son auteur, qui, avouons-le, en a ´et´e pleinement satisfait !
Resumo:
Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...
Resumo:
Background: Bilateral fourth nerve palsy is characterised by excyclotorsion, which can be corrected by reinforcement of the anterior tendon fibres of the superior oblique muscle. Patients and Methods: A retrospective study of 40 consecutive patients with bilateral acquired fourth nerve palsy operated by a selective tuck of the anterior portion of the superior oblique tendon between 1994 and 2012 was undertaken. Horizontal, vertical and torsional deviations were measured in 9 diagnostic positions of gaze and the field of binocular single vision was evaluated with the Harms tangent screen. Postoperative follow-ups took place at 1 week, 6 months, and ≥ 3 years. Results: Preoperative mean excyclotorsion was 9° in the primary position and 15° in downgaze. These values decreased to 2° and 5° 6 months after surgery, and 2.5° and 6° at ≥ 3 years. Immediate post-operative incyclotorsion in upgaze (28 patients) and Brown syndrome (15 patients) regressed spontaneously. The median score of field of binocular single vision improved from 4 % preoperatively to 76 % postoperatively. Conclusions: The selective tuck of the anterior tendon fibers of the superior oblique tendon enables an efficient and long-lasting correction of the ocular torsion induced by bilateral trochlear palsy.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.
Resumo:
BACKGROUND: Switzerland had the highest life expectancy at 82.8 years among the Organisation for Economic Co-operation and Development (OECD) countries in 2011. Geographical variation of life expectancy and its relation to the socioeconomic position of neighbourhoods are, however, not well understood. METHODS: We analysed the Swiss National Cohort, which linked the 2000 census with mortality records 2000-2008 to estimate life expectancy across neighbourhoods. A neighbourhood index of socioeconomic position (SEP) based on the median rent, education and occupation of household heads and crowding was calculated for 1.3 million overlapping neighbourhoods of 50 households. We used skew-normal regression models, including the index and additionally marital status, education, nationality, religion and occupation to calculate crude and adjusted estimates of life expectancy at age 30 years. RESULTS: Based on over 4.5 million individuals and over 400,000 deaths, estimates of life expectancy at age 30 in neighbourhoods ranged from 46.9 to 54.2 years in men and from 53.5 to 57.2 years in women. The correlation between life expectancy and neighbourhood SEP was strong (r=0.95 in men and r=0.94 women, both p values <0.0001). In a comparison of the lowest with the highest percentile of neighbourhood SEP, the crude difference in life expectancy from skew-normal regression was 4.5 years in men and 2.5 years in women. The corresponding adjusted differences were 2.8 and 1.9 years, respectively (all p values <0.0001). CONCLUSIONS: Although life expectancy is high in Switzerland, there is substantial geographical variation and life expectancy is strongly associated with the social standing of neighbourhoods.
Resumo:
Spinal cord injuries result after diving into shallow water, often after incautious jumps head first into water of unknown depth during recreational or sport activities. Mortality is generally due to upper cervical trauma. The authors present a case of a diving-related death in a young woman who underwent medicolegal investigations. The measured water depth at the supposed dive site was 1.40 m. Postmortem radiology and autopsy revealed fractures of the body and the posterior arch of the fifth cervical vertebra, a fracture of the right transverse process of the sixth cervical vertebra and hemorrhages involving the cervical paraspinal muscles. Neuropathology showed a posterior epidural hematoma involving the whole cervical region and a symmetric laceration of the spinal cord located at the fourth and fifth cervical vertebra level, surrounded by multiple petechial hemorrhages. Toxicology revealed the presence of ethanol in both blood and urine samples. The death was attributed to cervical spine fracture (C5-C6), spinal cord contusion, and subsequent drowning. This case highlights the usefulness of postmortem radiology, examination of the deep structures of the neck, toxicology, neuropathology, and a detailed research of signs of drowning to formulate appropriate hypotheses pertaining to the cause and mechanism of death.
Resumo:
Anthropomorphic model observers are mathe- matical algorithms which are applied to images with the ultimate goal of predicting human signal detection and classification accuracy across varieties of backgrounds, image acquisitions and display conditions. A limitation of current channelized model observers is their inability to handle irregularly-shaped signals, which are common in clinical images, without a high number of directional channels. Here, we derive a new linear model observer based on convolution channels which we refer to as the "Filtered Channel observer" (FCO), as an extension of the channelized Hotelling observer (CHO) and the nonprewhitening with an eye filter (NPWE) observer. In analogy to the CHO, this linear model observer can take the form of a single template with an external noise term. To compare with human observers, we tested signals with irregular and asymmetrical shapes spanning the size of lesions down to those of microcalfications in 4-AFC breast tomosynthesis detection tasks, with three different contrasts for each case. Whereas humans uniformly outperformed conventional CHOs, the FCO observer outperformed humans for every signal with only one exception. Additive internal noise in the models allowed us to degrade model performance and match human performance. We could not match all the human performances with a model with a single internal noise component for all signal shape, size and contrast conditions. This suggests that either the internal noise might vary across signals or that the model cannot entirely capture the human detection strategy. However, the FCO model offers an efficient way to apprehend human observer performance for a non-symmetric signal.
Resumo:
Division site positioning is critical for both symmetric and asymmetric cell divisions. In many organisms, positive and negative signals cooperate to position the contractile actin ring for cytokinesis. In rod-shaped fission yeast Schizosaccharomyces pombe cells, division at midcell is achieved through positive Mid1/anillin-dependent signaling emanating from the central nucleus and negative signals from the dual-specificity tyrosine phosphorylation-regulated kinase family kinase Pom1 at the cell poles. In this study, we show that Pom1 directly phosphorylates the F-BAR protein Cdc15, a central component of the cytokinetic ring. Pom1-dependent phosphorylation blocks Cdc15 binding to paxillin Pxl1 and C2 domain protein Fic1 and enhances Cdc15 dynamics. This promotes ring sliding from cell poles, which prevents septum assembly at the ends of cells with a displaced nucleus or lacking Mid1. Pom1 also slows down ring constriction. These results indicate that a strong negative signal from the Pom1 kinase at cell poles converts Cdc15 to its closed state, destabilizes the actomyosin ring, and thus promotes medial septation.
Resumo:
OBJECTIVE: To identify the clinical determinants of occurrence of postictal generalized EEG suppression (PGES) after generalized convulsive seizures (GCS). METHODS: We reviewed the video-EEG recordings of 417 patients included in the REPO2MSE study, a multicenter prospective cohort study of patients with drug-resistant focal epilepsy. According to ictal semiology, we classified GCS into 3 types: tonic-clonic GCS with bilateral and symmetric tonic arm extension (type 1), clonic GCS without tonic arm extension or flexion (type 2), and GCS with unilateral or asymmetric tonic arm extension or flexion (type 3). Association between PGES and person-specific or seizure-specific variables was analyzed after correction for individual effects and the varying number of seizures. RESULTS: A total of 99 GCS in 69 patients were included. Occurrence of PGES was independently associated with GCS type (p < 0.001) and lack of early administration of oxygen (p < 0.001). Odds ratio (OR) for GCS type 1 in comparison with GCS type 2 was 66.0 (95% confidence interval [CI 5.4-801.6]). In GCS type 1, risk of PGES was significantly increased when the seizure occurred during sleep (OR 5.0, 95% CI 1.2-20.9) and when oxygen was not administered early (OR 13.4, 95% CI 3.2-55.9). CONCLUSION: The risk of PGES dramatically varied as a function of GCS semiologic characteristics. Whatever the type of GCS, occurrence of PGES was prevented by early administration of oxygen.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
The adult sex ratio (ASR) is a key parameter of the demography of human and other animal populations, yet the causes of variation in ASR, how individuals respond to this variation, and how their response feeds back into population dynamics remain poorly understood. A prevalent hypothesis is that ASR is regulated by intrasexual competition, which would cause more mortality or emigration in the sex of increasing frequency. Our experimental manipulation of populations of the common lizard (Lacerta vivipara) shows the opposite effect. Male mortality and emigration are not higher under male-biased ASR. Rather, an excess of adult males begets aggression toward adult females, whose survival and fecundity drop, along with their emigration rate. The ensuing prediction that adult male skew should be amplified and total population size should decline is supported by long-term data. Numerical projections show that this amplifying effect causes a major risk of population extinction. In general, such an "evolutionary trap" toward extinction threatens populations in which there is a substantial mating cost for females, and environmental changes or management practices skew the ASR toward males.
Resumo:
Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs - chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, "de-centralizing" the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30-40% of 22q11DS patients develop.
Resumo:
The objective of this study is to assess the results of labyrinthine fenestration for fixed stapes in chronic ear disease. Using a prospective database, pre- and postoperative audiometric data from patients undergoing labyrinthine fenestration for fixation of the stapes in chronic ear disease others than otosclerosis between 2002 and 2012 were evaluated. Twenty-three labyrinthine fenestrations in chronic ear disease were performed (17 malleo-stapedotomies, 4 incus-stapedotomies, 1 neo-malleus-stapedotomy, 1 TORP-stapedotomy). Overall, the mean short-term (2 months) and long-term (42 months) postoperative air-bone gap (0.5-3 kHz) were 17.5 and 16.5 dB, respectively; long-term air-bone gap of <20 dB was obtained in 73 % of patients. There was no significant difference in air-bone gap closure between tympanosclerotic and post inflammatory osteogenic fixation of the stapes (p = 0.267). Hearing benefit success using the 'Belfast rule of the thumb' was achieved in 48 %. Normal bilateral hearing was achieved in 17 % and bilateral symmetric hearing impairment in 26 %. Only in 4 %, bone conduction worsened by more than 5 dB. Labyrinthine fenestration is an option in selected cases of stapes fixation in chronic ear disease and provides hearing gain without significant risk for sensorineural hearing loss. In those already selected cases, hearing benefit success 'Belfast rule of the thumb' is achieved only in half of the cases. This and the possible alternatives, should therefore be discussed preoperatively.