66 resultados para Short-chain fatty acids
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
BACKGROUND: Fish oil (FO) has antiinflammatory effects, which might reduce systemic inflammation induced by a cardiopulmonary bypass (CPB). OBJECTIVE: We tested whether perioperative infusions of FO modify the cell membrane composition, inflammatory responses, and clinical course of patients undergoing elective coronary artery bypass surgery. DESIGN: A prospective randomized controlled trial was conducted in cardiac surgery patients who received 3 infusions of 0.2 g/kg FO emulsion or saline (control) 12 and 2 h before and immediately after surgery. Blood samples (7 time points) and an atrial biopsy (during surgery) were obtained to assess the membrane incorporation of PUFAs. Hemodynamic data, catecholamine requirements, and core temperatures were recorded at 10-min intervals; blood triglycerides, nonesterified fatty acids, glucose, lactate, inflammatory cytokines, and carboxyhemoglobin concentrations were measured at selected time points. RESULTS: Twenty-eight patients, with a mean ± SD age of 65.5 ± 9.9 y, were enrolled with no baseline differences between groups. Significant increases in platelet EPA (+0.86%; P = 0.0001) and DHA (+0.87%; P = 0.019) were observed after FO consumption compared with at baseline. Atrial tissue EPA concentrations were higher after FO than after control treatments (+0.5%; P < 0.0001). FO did not significantly alter core temperature but decreased the postoperative rise in IL-6 (P = 0.018). Plasma triglycerides increased transiently after each FO infusion. Plasma concentrations of glucose, lactate, and blood carboxyhemoglobin were lower in the FO than in the control group on the day after surgery. Arrhythmia incidence was low with no significant difference between groups. No adverse effect of FO was detected. CONCLUSIONS: Perioperative FO infusions significantly increased PUFA concentrations in platelet and atrial tissue membranes within 12 h of the first FO administration and decreased biological and clinical signs of inflammation. These results suggest that perioperative FO may be beneficial in elective cardiac surgery with CPB. This trial was registered at clinicaltrials.gov as NCT00516178.
Resumo:
Authigenic phosphorites from the Miocene Monterey Formation (California) including an autochthonous phosphatic laminite were analyzed for molecular biomarkers, element content, and sulfur isotopic composition of associated pyrite and sulfate to evaluate the role of bacterial activity in the precipitation of phosphate minerals. The phosphorites formed in a depositional environment typified by upwelling with dynamic bottom currents and hardground formation. Pyrite enclosed in the phosphorites shows delta S-34 values as low as -36.5 parts per thousand VCDT, which is consistent with bacterial sulfate reduction. In a three-step extraction phosphorite dissolution extraction procedure, molecular fossils of sulfate-reducing bacteria (di-O-alkyl glycerol ethers and short-chain branched fatty acids i- and ai-C-15:0, i- and ai-C-17:0, and 10MeC(16:0)) were preferentially released from the mineral lattice. This suggests that the molecular fossils were tightly bound to carbonate fluorapatite, indicating that sulfate-reducing bacteria were involved in mineral formation. A close association of sulfate-reducing bacteria with large sulfide-oxidizing bacteria, which was previously suggested to favor carbonate fluorapatite precipitation, could neither be confirmed nor excluded for the Miocene Monterey Formation phosphorites. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the beta-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.
Resumo:
Expression by Saccharomyces cerevisiae of a polyhydroxyalkanoate (PHA) synthase modified at the carboxy end by the addition of a peroxisome targeting signal derived from the last 34 amino acids of the Brassica napus isocitrate lyase (ICL) and containing the terminal tripeptide Ser-Arg-Met resulted in the synthesis of PHA. The ability of the terminal peptide Ser-Arg-Met and of the 34-amino-acid peptide from the B. napus ICL to target foreign proteins to the peroxisome of S. cerevisiae was demonstrated with green fluorescent protein fusions. PHA synthesis was found to be dependent on the presence of both the enzymes generating the beta-oxidation intermediate 3-hydroxyacyl-coenzyme A (3-hydroxyacyl-[CoA]) and the peroxin-encoding PEX5 gene, demonstrating the requirement for a functional peroxisome and a beta-oxidation cycle for PHA synthesis. Using a variant of the S. cerevisiae beta-oxidation multifunctional enzyme with a mutation inactivating the B domain of the R-3-hydroxyacyl-CoA dehydrogenase, it was possible to modify the PHA monomer composition through an increase in the proportion of the short-chain monomers of five and six carbons.
Resumo:
OBJECTIVE: To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax ) versus high-intensity interval training (HIIT)] in men with class II and III obesity. METHODS: Nineteen men with obesity (BMI ≥ 35 kg(.) m(-2) ) were assigned to Fatmax group (GFatmax ) or to HIIT group (GHIIT ). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS: Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). CONCLUSIONS: Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group.