75 resultados para Semiconductor doping, Neutron transmutation.
Resumo:
The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. Cell-free miRNAs detected in blood plasma are used as specific and sensitive markers of physiological processes and some diseases. Circulating miRNAs are highly stable in body fluids, for example plasma. Therefore, profiles of circulating miRNAs have been investigated for potential use as novel, non-invasive anti-doping biomarkers. This review describes the biological mechanisms underlying the variation of circulating miRNAs, revealing that they have great potential as a new class of biomarker for detection of doping substances. The latest developments in extraction and profiling technology, and the technical design of experiments useful for anti-doping, are also discussed. Longitudinal measurements of circulating miRNAs in the context of the athlete biological passport are proposed as an efficient strategy for the use of these new markers. The review also emphasizes potential challenges for the translation of circulating miRNAs from research into practical anti-doping applications.
Resumo:
OBJECTIVE: The major objective of this study was to investigate the effects of several days of intense exercise on growth hormone (hGH) testing using the World Anti-Doping Agencies hGH isoform differential immunoassays. Additionally the effects of circadian variation and exercise type on the isoform ratios were also investigated. STUDY DESIGN: 15 male athletes performed a simulated nine day cycling stage race. Blood samples were collected twice daily over a period of 15days (stage race+three days before and after). hGH isoforms were analysed by the official WADA immunoassays (CMZ Assay GmbH). RESULTS: All measured isoform ratios were far below the WADA decision limits for an adverse analytical finding. Changes in the isoform ratios could not be clearly connected to circadian variation, exercise duration or intensity. CONCLUSIONS: The present study demonstrates that the hGH isoform ratios are not significantly affected by exercise or circadian variation. We demonstrated that heavy, long term exercise does not interfere with the decision limits for an adverse analytical finding.
Resumo:
Prominent doping cases in certain sports have recently raised public awareness of doping and reinforced the perception that doping is widespread. Efforts to deal with doping in sport have intensified in recent years, yet the general public believes that the 'cheaters' are ahead of the testers. Therefore, there is an urgent need to change the antidoping strategy. For example, the increase in the number of individual drug tests conducted between 2005 and 2012 was approximately 90 000 and equivalent to an increase of about 50%, yet the number of adverse analytical findings remained broadly the same. There is also a strikingly different prevalence of doping substances and methods in sports such as a 0.03% prevalence of anabolic steroids in football compared to 0.4% in the overall WADA statistics. Future efforts in the fight against doping should therefore be more heavily based on preventative strategies such as education and on the analysis of data and forensic intelligence and also on the experiences of relevant stakeholders such as the national antidoping organisations, the laboratories, athletes or team physicians and related biomedical support staff. This strategy is essential to instigate the change needed to more effectively fight doping in sport.
Resumo:
The final tournament of the UEFA European Football Championship is one of the top sporting events in the world, and a high-profile event of this kind requires a well-planned and well-executed anti-doping programme to ensure the integrity of results in the competition. UEFA EURO 2012 presented a unique logistical challenge, with the tournament spread across two countries, both covering a large geographical area. This paper discusses the planning and delivery of both the pre tournament out-of-competition (OOC) testing programme and the in-competition (IC) programme, as well as reviewing the activities of doping control officers (DCOs), the whereabouts programme and assessing the sample collection and transport process. The analytical approach applied is also discussed, along with an overview of the distribution of T/E ratios and blood parameters.
Resumo:
Stimulants are banned in-competition for all categories of sports by the World Anti-Doping Agency. A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay employing electrospray ionisation in positive mode was developed in that work for the quantification in urine specimens of 4-methyl-2-hexaneamine, a primary amine exhibiting sympathomimetic properties. Following a simple pretreatment procedure, the analyte was separated using a gradient mobile phase on reverse phase C8 column. Selected reaction monitoring m/z 116.2-->57.3 was specific for detection of 4-methyl-2-hexaneamine and the assay exhibited a linear dynamic range of 50-700 ng/mL. The validated method has been successfully applied to analyze the target compound in food supplements as well as in urine specimens. The administered drug (40 mg) was detected at the level of 350 ng/mL in the urine up to 4 days.
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.
Resumo:
The article proposes an alternative approach to policies for preventing doping in cycling, based on in-depth analysis of the functioning of nine of the 40 world professional teams and the careers of the 2,351 riders who were or have been professionals since 2005. The first part shows that the instruments of prevention have been based on a questionable understanding of doping as an individual moral fault, and have not produced the expected results. The second part proposes to analyse the ways in which teams and riders produce their achievments, so as to put forward an alternative to the anti-doping policies used hitherto, which have little impact on riders. The study shows that it is more pertinent to examine the forms of employment and the business models, because these have important effects on cycling professionals' conditions of work. It makes it possible to identify three dimensions of the risk of doping on which organisations can act in their antidoping policies: team organisation, riders' preparation and workload, and the precarity of employment.
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes. Cell-free miRNAs have been proposed as biomarkers of disease, including diagnosis, prognosis, and monitoring of treatment responses. These circulating miRNAs are highly stable in several body fluids, including plasma and serum; hence, in view of their potential use as novel, non-invasive biomarkers, the profiles of circulating miRNAs have been explored in the field of anti-doping. This chapter describes the enormous potential of circulating miRNAs as a new class of biomarkers for the detection of doping substances, and highlights the advantages of measuring these stable species over other methods that have already been implemented in anti-doping regimes. Incorporating longitudinal measurements of circulating miRNAs into the Athlete Biological Passport is proposed as an efficient strategy for the implementation of these new biomarkers. Furthermore, potential challenges related to the transition of measurements of circulating miRNAs from research settings to practical anti-doping applications are presented.
Resumo:
The fight against doping in sports has been governed since 1999 by the World Anti-Doping Agency (WADA), an independent institution behind the implementation of the World Anti-Doping Code (Code). The intent of the Code is to protect clean athletes through the harmonization of anti-doping programs at the international level with special attention to detection, deterrence and prevention of doping.1 A new version of the Code came into force on January 1st 2015, introducing, among other improvements, longer periods of sanctioning for athletes (up to four years) and measures to strengthen the role of anti-doping investigations and intelligence. To ensure optimal harmonization, five International Standards covering different technical aspects of the Code are also currently in force: the List of Prohibited Substances and Methods (List), Testing and Investigations, Laboratories, Therapeutic Use Exemptions (TUE) and Protection of Privacy and Personal Information. Adherence to these standards is mandatory for all anti-doping stakeholders to be compliant with the Code. Among these documents, the eighth version of International Standard for Laboratories (ISL), which also came into effect on January 1st 2015, includes regulations for WADA and ISO/IEC 17025 accreditations and their application for urine and blood sample analysis by anti-doping laboratories.2 Specific requirements are also described in several Technical Documents or Guidelines in which various topics are highlighted such as the identification criteria for gas chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometry (MS) techniques (IDCR), measurements and reporting of endogenous androgenic anabolic agents (EAAS) and analytical requirements for the Athlete Biological Passport (ABP).
Resumo:
This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.