70 resultados para Scanning electron microscopic
Resumo:
Postsynaptic density 95 (PSD-95) is an important regulator of synaptic structure and plasticity. However, its contribution to synapse formation and organization remains unclear. Using a combined electron microscopic, genetic, and pharmacological approach, we uncover a new mechanism through which PSD-95 regulates synaptogenesis. We find that PSD-95 overexpression affected spine morphology but also promoted the formation of multiinnervated spines (MISs) contacted by up to seven presynaptic terminals. The formation of multiple contacts was specifically prevented by deletion of the PDZ(2) domain of PSD-95, which interacts with nitric oxide (NO) synthase (NOS). Similarly, PSD-95 overexpression combined with small interfering RNA-mediated down-regulation or the pharmacological blockade of NOS prevented axon differentiation into varicosities and multisynapse formation. Conversely, treatment of hippocampal slices with an NO donor or cyclic guanosine monophosphate analogue induced MISs. NOS blockade also reduced spine and synapse density in developing hippocampal cultures. These results indicate that the postsynaptic site, through an NOS-PSD-95 interaction and NO signaling, promotes synapse formation with nearby axons.
Resumo:
Recently it was reported that, at autopsy, in neuropathologically confirmed cases of Alzheimer's disease spirochaetes were found in blood and cerebrospinal fluid using dark-field microscopy. Moreover, the spirochaetes were isolated and cultured from brain tissue. We now show, using scanning electron microscopy and atomic force microscopy that the helically shaped microorganisms isolated and cultured from the Alzheimer brains possess axial filaments. This indicates that these microorganisms taxonomically indeed belong to the order Spirochaetales. A morphometric analysis reinforces this notion.
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
The origin of soil mineralized nanofibres remains controversial. It is attributed to either biogenic factors or physicochemical processes. Scanning electron microscope and transmission electron microscope observations show that nanofibres could originate from the breakdown of fungal hyphae, especially its cell wall. It is hypothesized that during the decay of organic matter, cell wall microfibrils are released in the soil where they are exposed to mineralizing pore fluids, leading to their calcitic pseudomorphosis and/or are used as a template for calcite precipitation. When associated with needle fibre calcite bundles, nanofibres could indicate the relict of an organic sheath in which calcite has precipitated. This paper emphasizes the important roles of both organic matter and fungi in carbonatogenesis, and consequently in the soil carbon cycle.
Resumo:
The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34(+) stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.
Resumo:
INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Resumo:
Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.
Resumo:
A well circumscribed nodular mass discovered on routine chest ray examination, in the left inferior lobe of an otherwise healthy 49-year-old male. Histopathologically the lesion corresponded to a typical so called sclerosing hemangioma. The clinical and histopathological features are described. The sclerosing hemangioma of the lung is a rare benign tumor. Its histogenesis has not been explained yet. Following the electron-microscopic and immunohistochemical researches the opinions have been still unhomogeneous. Therefore, it is concluded that is a tumor of epithelial, endothelial, mesenchymal and even mesothelial origin. This study deals with this tumor, its immunohistochemical analysis points at its epithelial character.
Resumo:
Complications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems.
Resumo:
Neurons and astrocytes, the two major cell populations in the adult brain, are characterized by their own mode of intercellular communication--the synapses and the gap junctions (GJ), respectively. In addition, there is increasing evidence for dynamic and metabolic neuroglial interactions resulting in the modulation of synaptic transmission at the so-called "tripartite synapse". Based on this, we have investigated at the ultrastructural level how excitatory synapses (ES) and astroglial GJ are spatially distributed in layer IV of the barrel cortex of the adult mouse. We used specific antibodies for connexin (Cx) 30 and 43 to identify astroglial GJ, these two proteins are known to be present in the majority of astroglial GJ in the cerebral cortex. In electron-microscopic images, we measured the distance between two ES, between two GJ and between a GJ and its nearest ES. We found a ratio of two GJ per three ES in the hollow and septal areas. Taking into account the size of an astrocyte domain, the high density of GJ suggests the occurrence of reflexive type, i.e. GJ between processes of the same astrocyte. Interestingly, the distance between an ES and an astroglial GJ was found to be significantly lower than that between either two synapses or between two GJ. These observations indicate that the two modes of cell-to-cell communication are not randomly distributed in layer IV of the barrel cortex. Consequently, this feature may provide the morphological support for the recently reported functional interactions between neuronal circuits and astroglial networks.