88 resultados para SERIAL RINGS
Resumo:
Rapport de synthèse : Cette thèse a étudié en détail le cas d'un enfant souffrant d'une hémiplégie congénitale sur un infarctus prénatal étendu qui a développé une forme particulière d'épilepsie, le syndrome des pointes ondes continues du sommeil (POCS), associé à une régression mentale massive. Les caractéristiques de cette détérioration pointaient vers un dysfonctionnement de type frontal. Une chirurgie de l'épilepsie (hémisphérotomie) a, non seulement, permis la guérison de l'épilepsie mais une récupération rapide sur le plan comportemental et cognitif, suivie d'une reprise plus lente du développement, avec finalement à l'âge de 11 ans un niveau de déficience intellectuelle modérée. L'intérêt de cette étude réside dans le fait que l'enfant a pu être suivi prospectivement entre l'âge de 4.5 ans et 11 ans par des enregistrements électro-encéphalographiques (EEG) ainsi que des tests neuropsychologiques et des questionnaires de comportements sériés, permettant de comparer les périodes pré-, péri- et postopératoires, ce qui est rarement réalisable. Un enregistrement EEG de surface a même pu être effectué durant l'opération sur l'hémisphère non lésé, permettant de documenter l'arrêt des décharges épileptiformes généralisées dès la fin de l'intervention. L'hypothèse que nous avons- souhaité démontrer est que la régression comportementale et cognitive présentée par l'enfant après une période de développement précoce presque normale (retard de langage) était de nature épileptique : nous l'expliquons par la propagation de l'activité électrique anormale à partir de la lésion de l'hémisphère gauche vers les régions préservées, en particulier frontales bilatérales. L'hémisphérotomie a permis une récupération rapide en déconnectant l'hémisphère gauche lésé et épileptogène de l'hémisphère sain, qui a ainsi pu reprendre les fonctions cognitives les plus importantes. Les progrès plus lents par la suite et l'absence de rattrapage au delà d'un niveau de déficience mentale modérée sont plus difficiles à expliquer: on postule ici un effet de l'épilepsie sur le développement de réseaux neuronaux de l'hémisphère initialement non lésé, réseaux qui sont à la fois à un stade précoce de leur maturation et en cours de réorganisation suite à la lésion prénatale. La littérature sur les déficits cognitifs avant et après hemisphérotomie s'est surtout préoccupée du langage et de sa récupération possible. À notre connaissance, notre étude est la première à documenter la réversibilité d'une détérioration mentale avec les caractéristiques d'un syndrome frontal après hémisphérotomie. La chirurgie de l'épilepsie a offert ici une occasion unique de documenter le rôle de l'activité épileptique dans la régression cognitive puisqu'en interrompant brusquement la propagation de l'activité électrique anormale, on a pu comparer la dynamique du développement avant et après l'intervention. La mise en relation des multiples examens cliniques et EEG pratiqués chez un seul enfant sur plusieurs années a permis d'obtenir des informations importantes dans la compréhension des troubles cognitifs et du comportement associés aux épilepsies focales réfractaires. ABSTRACT : A boy with a right congenital hemiparesis due to a left pre-natal middle cerebral artery infarct developed focal epilepsy at 33 months and then an insidious and subsequently more rapid, massive cognitive and behavioural regression with a frontal syndrome between the ages of 4 and 5 years with continuous spike-waves during sleep (CSWS) on the EEG. Both the epilepsy and the CSWS were immediately suppressed by hemispherotomy at the age of 5 years and 4months. A behavioural-cognitive follow-up prior to hemispheratomy, an per-operative EEG and corticography and serial post-operative neuropsychological assessments were performed until the age of 11 years. The spread of the epileptic activity to the "healthy" frontal region was the cause of the reversible frontal syndrome. A later gradual long-term but incomplete cognitive recovery, with moderate mental disability was documented. T9ris outcome is probably explained by another facet of the epilepsy, namely the structural effects of prolonged epileptic dischazges in rapidly developing cerebral networks which are, at the same time undergoing the reorganization imposed by a unilateral early hemispheric lesion. Group studies on the outcome of children before and after hemispherectomy using only single IQ measures, pre- and postoperatively, may miss particular epileptic cognitive dysfunctions as they are likely to be different from case to case. Such detailed and rarely available complementary clinical and EEG data obtained in a single case at different time periods in relation to the epilepsy, including peroperative electrophysiological findings, may help to understand the different cognitive deficits and recovery profiles and the limits of full cognitive recovery.
Resumo:
Next-generation sequencing offers an unprecedented opportunity to jointly analyze cellular and viral transcriptional activity without prerequisite knowledge of the nature of the transcripts. SupT1 cells were infected with a vesicular stomatitis virus G envelope protein (VSV-G)-pseudotyped HIV vector. At 24 h postinfection, both cellular and viral transcriptomes were analyzed by serial analysis of gene expression followed by high-throughput sequencing (SAGE-Seq). Read mapping resulted in 33 to 44 million tags aligning with the human transcriptome and 0.23 to 0.25 million tags aligning with the genome of the HIV-1 vector. Thus, at peak infection, 1 transcript in 143 is of viral origin (0.7%), including a small component of antisense viral transcription. Of the detected cellular transcripts, 826 (2.3%) were differentially expressed between mock- and HIV-infected samples. The approach also assessed whether HIV-1 infection modulates the expression of repetitive elements or endogenous retroviruses. We observed very active transcription of these elements, with 1 transcript in 237 being of such origin, corresponding on average to 123,123 reads in mock-infected samples (0.40%) and 129,149 reads in HIV-1-infected samples (0.45%) mapping to the genomic Repbase repository. This analysis highlights key details in the generation and interpretation of high-throughput data in the setting of HIV-1 cellular infection.
Resumo:
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage.
Resumo:
Purpose: Epilepsy surgery in young children with focal lesions offers a unique opportunity to study the impact of severe seizures on cognitive development during a period of maximal brain plasticity, if immediate control can be obtained. We studied 11 children with early refractory epilepsy (median onset, 7.5 months) due to focal lesion who were rendered seizure-free after surgery performed before the age of 6 years. Methods: The children were followed prospectively for a median of 5 years with serial neuropsychological assessments correlated with electroencephalography (EEG) and surgery-related variables. Results: Short-term follow-up revealed rapid cognitive gains corresponding to cessation of intense and propagated epileptic activity [two with early catastrophic epilepsy; two with regression and continuous spike-waves during sleep (CSWS) or frontal seizures]; unchanged or slowed velocity of progress in six children (five with complex partial seizures and frontal or temporal cortical malformations). Longer-term follow-up showed stabilization of cognitive levels in the impaired range in most children and slow progress up to borderline level in two with initial gains. Discussion: Cessation of epileptic activity after early surgery can be followed by substantial cognitive gains, but not in all children. In the short term, lack of catch-up may be explained by loss of retained function in the removed epileptogenic area; in the longer term, by decreased intellectual potential of genetic origin, irreversible epileptic damage to neural networks supporting cognitive functions, or reorganization plasticity after early focal lesions. Cognitive recovery has to be considered as a "bonus," which can be predicted in some specific circumstances.
Resumo:
Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1.
Resumo:
BACKGROUND: Nineteen patients were evaluated after closure of intrathoracic esophageal leaks by a pediculated muscle flap onlay repair in the presence of mediastinal and systemic sepsis. METHODS: Intrathoracic esophageal leaks with mediastinitis and systemic sepsis occurred after delayed spontaneous perforations (n = 7) or surgical and endoscopic interventions (n = 12). Six patients presented with fulminant anastomotic leaks. Seven patients had previous attempts to close the leak by surgery (n = 4) or stenting (2) or both (n = 1). The debrided defects measured up to 2 x 12 cm or involved three quarters of the anastomotic circumference and were closed either by a full thickness diaphragmatic flap (n = 13) or a pediculated intrathoracically transposed extrathoracic muscle flap (n = 6). All patients had postoperative contrast esophagography between days 7 and 10 and an endoscopic evaluation 4 to 6 months after surgery. RESULTS: There was no 30-day mortality. During follow-up (4 to 42 months), 16 patients (84%) revealed functional and morphological restoration of the esophagointestinal integrity without further interventions. One patient required serial dilatations for a stricture, and 1 underwent temporary stenting for a persistent fistula; both patients had normal control endoscopy during follow-up. A third patient requiring permanent stenting for stenosis died from gastrointestinal bleeding due to stent erosion during follow-up. CONCLUSIONS: Intrathoracic esophageal leaks may be closed efficiently by a muscle flap onlay approach in the presence of mediastinitis and where a primary repair seems risky. The same holds true for fulminant intrathoracic anastomotic leaks after esophagectomy or other surgical interventions at the gastroesophageal junction.
Resumo:
Three out of five human endometrial carcinomas were successfully grafted into nude mice (BALB/c/nu/nu). Two of these tumors could be maintained by serial transplantation. The morphological characteristics displayed by the grafted tumors were comparable to those of the original carcinomas. Permanent cell lines were established from these two tumors. Reinjection of cells grown in vitro into nude mice produced nodules of identical histology as compared to original solid transplants. The influence of medroxyprogesterone acetate on tumor growth in vivo and cell proliferation in vitro was studied. This hormonal treatment did not produce any significant effect on tumor cells, either in vitro or in vivo, for the two endometrial carcinomas. After medroxyprogesterone administration, a slight but non-significant growth inhibition of the tumor cells in vitro was observed and the tumor transplants in vivo did not appear to be influenced. The experiments illustrate the possible use of this model for testing potential anti-cancer agents.
Resumo:
We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.
Resumo:
CONTEXT AND OBJECTIVE: The optimal strategy for inducing fertility in men with congenital hypogonadotropic hypogonadism (CHH) is equivocal. Albeit a biologically plausible approach, pretreatment with recombinant FSH (rFSH) before GnRH/human chorionic gonadotropin administration has not been sufficiently assessed. The objective of the study was to test this method. DESIGN AND SETTING: This was a randomized, open-label treatment protocol at an academic medical center. PATIENTS AND INTERVENTIONS: GnRH-deficient men (CHH) with prepubertal testes (<4 mL), no cryptorchidism, and no prior gonadotropin therapy were randomly assigned to either 24 months of pulsatile GnRH therapy alone (inducing endogenous LH and FSH release) or 4 months of rFSH pretreatment followed by 24 months of GnRH therapy. Patients underwent serial testicular biopsies, ultrasound assessments of testicular volume, serum hormone measurements, and seminal fluid analyses. RESULTS: rFSH treatment increased inhibin B levels into the normal range (from 29 ± 9 to 107 ± 41 pg/mL, P < .05) and doubled testicular volume (from 1.1 ± 0.2 to 2.2 ± 0.3 mL, P < .005). Histological analysis showed proliferation of both Sertoli cells (SCs) and spermatogonia, a decreased SC to germ cell ratio (from 0.74 to 0.35), and SC cytoskeletal rearrangements. With pulsatile GnRH, the groups had similar hormonal responses and exhibited significant testicular growth. All men receiving rFSH pretreatment developed sperm in their ejaculate (7 of 7 vs 4 of 6 in the GnRH-only group) and showed trends toward higher maximal sperm counts. CONCLUSIONS: rFSH pretreatment followed by GnRH is successful in inducing testicular growth and fertility in men with CHH with prepubertal testes. rFSH not only appears to maximize the SC population but also induces morphologic changes, suggesting broader developmental roles.
Resumo:
Friedreich's ataxia (FRDA), the most common autosomal recessive ataxia, is characterised by progressive ataxia with dysarthria of speech, loss of deep-tendon reflexes, impaired vibratory and proprioceptive sensations and corticospinal weakness with a Babinski's sign. Patients eventually also develop kyphoscoliosis, cardiomyopathy and diabetes mellitus. The disease is a GAA repeat disorder resulting in severely reduced levels of frataxin, with secondary increased sensitivity to oxidative stress. The anti-oxidative drug, idebenone, is effective against FRDA-associated cardiomyopathy. We provide detailed clinical, electrophysiological and biochemical data from 20 genetically confirmed FRDA patients and have analysed the relationship between phenotype, genotype and malondialdehyde (MDA), which is a marker of superoxide formation. We assessed the effects of idebenone biochemically by measuring blood MDA and clinically by serial measurements of the International Cooperative Ataxia Rating Scale (ICARS). The GAA repeat length influenced the age at onset (p <0.001), the severity of ataxia (p = 0.02), the presence of cardiomyopathy (p = 0.04) and of low-frequency hearing loss (p = 0.009). Multilinear regression analysis showed (p = 0.006) that ICARS was dependent on the two variables of disease duration (p = 0.01) and size of the GAA expansion (p = 0.02). We found no correlation to bilateral palpebral ptosis, visual impairment, diabetes mellitus or skeletal deformities, all of which appear to be signs of disease progression rather than severity. We discuss more thoroughly two underrecognised clinical findings: palpebral ptosis and GAA length-dependent low-frequency hearing loss. The average ICARS remained unchanged in 10 patients for whom follow-up on treatment was available (mean 2.9 years), whereas most patients treated with idebenone reported an improvement in dysarthria (63%), hand dexterity (58%) and fatigue (47%) after taking the drug for several weeks or months. Oxidative stress analysis showed an unexpected increase in blood MDA levels in patients on idebenone (p = 0.04), and we discuss the putative underlying mechanism for this result, which could then explain the unique efficacy of idebenone in treating the FRDA-associated cardiomyopathy, as opposed to other antioxidative drugs. Indeed, idebenone is not only a powerful stimulator of complexes II and III of the respiratory chain, but also an inhibitor of complex I activity, then promoting superoxide formation. Our preliminary clinical observations are the first to date supporting an effect of idebenone in delaying neurological worsening. Our MDA results point to the dual effect of idebenone on oxidative stress and to the need for controlled studies to assess its potential toxicity at high doses on the one hand, and to revisit the exact mechanisms underlying the physiopathology of Friedreich's ataxia on the other hand, while recent reports suggest non-oxidative pathophysiology of the disease.
Resumo:
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast.
Resumo:
Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results. Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging. Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session. Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium. Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions.
Resumo:
It is known that hypertension is associated with endothelial dysfunction and that Angiotensin II (Ang II) is a key player in the pathogenesis of hypertension. We aimed to elucidate whether endothelial dysfunction is a specific feature of Ang II-mediated hypertension or a common finding of hypertension, independently of underlying etiology. We studied endothelial-dependent vasorelaxation in precapillary resistance arterioles and in various large-caliber conductance arteries in wild-type mice with Ang II-dependent hypertension (2-kidney 1-clip (2K1C) model) or Ang II-independent (volume overload) hypertension (1-kidney 1-clip model (1K1C)). Normotensive sham mice were used as controls. Aortic mechanical properties were also evaluated. Intravital microscopy of precapillary arterioles revealed a significantly impaired endothelium-dependent vasorelaxation in 2K1C mice compared with sham mice, as quantified by the ratio of acetylcholine (ACh)-induced over S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced vasorelaxation (2K1C: 0.49±0.12 vs. sham: 0.87±0.11, P=0.018). In contrast, the ACh/SNAP ratio in volume-overload hypertension 1K1C mice was not significantly different from sham mice, indicating no specific endothelial dysfunction (1K1C: 0.77±0.27 vs. sham: 0.87±0.11, P=0.138). Mechanical aortic wall properties and endothelium-dependent vasorelaxation, assessed ex vivo in rings of large-caliber conductance (abdominal and thoracic aorta, carotid and femoral arteries), were not different between 2K1C, 1K1C and sham mice. Endothelial dysfunction is an early feature of Ang II- but not volume-overload-mediated hypertension. This occurs exclusively at the level of precapillary arterioles and not in conduit arteries. Our findings, if confirmed in clinical studies, will provide a better understanding of the pathophysiological mechanisms of hypertension.
Resumo:
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.
Resumo:
Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects.