63 resultados para SCALE MIXTURES OF SKEW-NORMAL DISTRIBUTIONS
Resumo:
The MIGCLIM R package is a function library for the open source R software that enables the implementation of species-specific dispersal constraints into projections of species distribution models under environmental change and/or landscape fragmentation scenarios. The model is based on a cellular automaton and the basic modeling unit is a cell that is inhabited or not. Model parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule production potential and habitat invasibility. The MIGCLIM R package has been designed to be highly flexible in the parameter values it accepts, and to offer good compatibility with existing species distribution modeling software. Possible applications include the projection of future species distributions under environmental change conditions and modeling the spread of invasive species.
Resumo:
Introduction: The majority of convulsions are due to an epileptic seizure or a convulsive syncope. The incidence of out-of-hospital cardiac arrest (OH-CA) presenting as a convulsion is unknown. Objective: This study aimed to measure the incidence of adult nontraumatic OH-CA presenting as a convulsion, a rate that has not been published so far, to the best of our knowledge. Methods: We prospectively collected all incoming calls with an out-of-hospital nontraumatic seizure as the chief complaint in patients >18 years old during a 24-month period. Among these calls, we collected cases identified as OH-CA by paramedics. Results: During the 24-month period, the emergency medical services (EMS) dispatch center received 561 calls for an out-of-hospital nontraumatic convulsion in an adult. Twelve cases were ultimately classified as CA. In this group, one bystander spontaneously reported that the patient was known for epilepsy. The incidence of OH-CA presenting as convulsions was therefore 2.1% of all calls for convulsion. Over the same period, the EMS dispatch center received 1,035 calls related to an adult nontraumatic OH-CA. Therefore, the rate of OH-CA presenting as a convulsion represented 1.2% of all adult nontraumatic OH-CA. Conclusion:L Only 12 cases out of the 531 calls for nontraumatic adult convulsions were confirmed OHCA (2.1%). Nevertheless, this unusual presentation of OH-CA must be recognized by dispatchers, even when a patient is reported by bystander as a known epileptic. Dispatchers should keep bystanders on the line or call them back before paramedics' arrival, and have them confirm the progressive return of a normal pat- tern of breathing and state of consciousness; if not, they should encourage the bystander to initiate CPR when necessary. An intervention should be implemented to improve the detection by dispatchers of OH-CA presenting as convulsion by the development of a specific interview and directed observation. For dispatchers, a past medical history of epilepsy should not be regarded as sufficient information to rule out OH-CA. It is mandatory that known epileptic patients should be monitored in the same way as nonepileptic patients.
Resumo:
Introduction: The Fragile X - associated Tremor Ataxia Syndrome (FXTAS) is a recently described, and under-diagnosed, late onset (≈ 60y) neurodegenerative disorder affecting male carriers of a premutation in the Fragile X Mental Retardation 1 (FMR1) gene. The premutation is an CGG (Cytosine-Guanine-Guanine) expansion (55 to 200 CGG repeats) in the proximal region of the FMR1 gene. Patients with FXTAS primarily present with cerebellar ataxia and intention tremor. Neuroradiological features of FXTAS include prominent white matter disease in the periventricular, subcortical, middle cerebellar peduncles and deep white matter of the cerebellum on T2-weighted or FLAIR MR imaging (Jacquemmont 2007, Loesch 2007, Brunberg 2002, Cohen 2006). We hypothesize that a significant white matter alteration is present in younger individuals many years prior to clinical symptoms and/or the presence of visible lesions on conventional MR sequences and might be detectable by magnetization transfer (MT) imaging. Methods: Eleven asymptomatic premutation carriers (mean age = 55 years) and seven intra-familial controls participated to the study. A standardized neurological examination was performed on all participants and a neuropsychological evaluation was carried out before MR scanning performed on a 3T Siemens Trio. The protocol included a sagittal T1-weighted 3D gradient-echo sequence (MPRAGE, 160 slices, 1 mm^3 isotropic voxels) and a gradient-echo MTI (FA 30, TE 15, matrix size 256*256, pixel size 1*1 mm, 36 slices (thickness 2mm), MT pulse duration 7.68 ms, FA 500, frequency offset 1.5 kHz). MTI was performed by acquiring consecutively two set of images; first with and then without the MT saturation pulse. MT images were coregistered to the T1 acquisition. The MTR for every intracranial voxel was calculated as follows: MTR = (M0 - MS)/M0*100%, creating a MTR map for each subject. As first analysis, the whole white matter (WM) was used to mask the MTR image in order to create an histogram of the MTR distribution in the whole tissue class over the two groups examined. Then, for each subject, we performed a segmentation and parcellation of the brain by means of Freesurfer software, starting from the high resolution T1-weighted anatomical acquisition. Cortical parcellations was used to assign a label to the underlying white matter by the construction of a Voronoi diagram in the WM voxels of the MR volume based on distance to the nearest cortical parcellation label. This procedure allowed us to subdivide the cerebral WM in 78 ROIs according to the cortical parcellation (see example in Fig 1). The cerebellum, by the same procedure, was subdivided in 5 ROIs (2 per each hemisphere and one corresponding to the brainstem). For each subject, we calculated the mean value of MTR within each ROI and averaged over controls and patients. Significant differences between the two groups were tested using a two sample T-test (p<0.01). Results: Neurological examination showed that no patient met the clinical criteria of Fragile X Tremor and Ataxia Syndrome yet. Nonetheless, premutation carriers showed some subtle neurological signs of the disorder. In fact, premutation carriers showed a significant increase of tremor (CRST, T-test p=0.007) and increase of ataxia (ICARS, p=0.004) when compared to controls. The neuropsychological evaluation was normal in both groups. To obtain general characterizations of myelination for each subject and premutation carriers, we first computed the distribution of MTR values across the total white matter volume and averaged for each group. We tested the equality of the two distributions with the non parametric Kolmogorov-Smirnov test and we rejected the null-hypothesis at a p=0.03 (fig. 2). As expected, when comparing the asymptomatic permutation carriers with control subjects, the peak value and peak position of the MTR values within the whole WM were decreased and the width of the distribution curve was increased (p<0.01). These three changes point to an alteration of the global myelin status of the premutation carriers. Subsequently, to analyze the regional myelination and white matter integrity of the same group, we performed a ROI analysis of MTR data. The ROI-based analysis showed a decrease of mean MTR value in premutation carriers compared to controls in bilateral orbito-frontal and inferior frontal WM, entorhinal and cingulum regions and cerebellum (Fig 3). The detection of these differences in these regions failed with other conventional MR techniques. Conclusions: These preliminary data confirm that in premutation carriers, there are indeed alterations in "normal appearing white matter" (NAWM) and these alterations are visible with the MT technique. These results indicate that MT imaging may be a relevant approach to detect both global and local alterations within NAWM in "asymptomatic" carriers of premutations in the Fragile X Mental Retardation 1 (FMR1) gene. The sensitivity of MT in the detection of these alterations might point towards a specific physiopathological mechanism linked to an underlying myelin disorder. ROI-based analyses show that the frontal, parahippocampal and cerebellar regions are already significantly affected before the onset of symptoms. A larger sample will allow us to determine the minimum CGG expansion and age associated with these subclinical white matter alterations.