199 resultados para Robust methods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reported prevalence of late-life depressive symptoms varies widely between studies, a finding that might be attributed to cultural as well as methodological factors. The EURO-D scale was developed to allow valid comparison of prevalence and risk associations between European countries. This study used Confirmatory Factor Analysis (CFA) and Rasch models to assess whether the goal of measurement invariance had been achieved; using EURO-D scale data collected in 10 European countries as part of the Survey of Health, Ageing and Retirement in Europe (SHARE) (n = 22,777). The results suggested a two-factor solution (Affective Suffering and Motivation) after Principal Component Analysis (PCA) in 9 of the 10 countries. With CFA, in all countries, the two-factor solution had better overall goodness-of-fit than the one-factor solution. However, only the Affective Suffering subscale was equivalent across countries, while the Motivation subscale was not. The Rasch model indicated that the EURO-D was a hierarchical scale. While the calibration pattern was similar across countries, between countries agreement in item calibrations was stronger for the items loading on the affective suffering than the motivation factor. In conclusion, there is evidence to support the EURO-D as either a uni-dimensional or bi-dimensional scale measure of depressive symptoms in late-life across European countries. The Affective Suffering sub-component had more robust cross-cultural validity than the Motivation sub-component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific properties emerge from the structure of large networks, such as that of worldwide air traffic, including a highly hierarchical node structure and multi-level small world sub-groups that strongly influence future dynamics. We have developed clustering methods to understand the form of these structures, to identify structural properties, and to evaluate the effects of these properties. Graph clustering methods are often constructed from different components: a metric, a clustering index, and a modularity measure to assess the quality of a clustering method. To understand the impact of each of these components on the clustering method, we explore and compare different combinations. These different combinations are used to compare multilevel clustering methods to delineate the effects of geographical distance, hubs, network densities, and bridges on worldwide air passenger traffic. The ultimate goal of this methodological research is to demonstrate evidence of combined effects in the development of an air traffic network. In fact, the network can be divided into different levels of âeurooecohesionâeuro, which can be qualified and measured by comparative studies (Newman, 2002; Guimera et al., 2005; Sales-Pardo et al., 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution three-dimensional (3-D) seismic reflection survey was conducted in Lake Geneva, near the city of Lausanne, Switzerland, as part of a project for developing such seismic techniques. Using a single 48-channel streamer, the 3-D site with an area of 1200 m x 600 m was surveyed in 10 days. A variety of complex geologic structures (e.g. thrusts, folds, channel-fill) up to similar to150 m below the water bottom were obtained with a 15 in.(3) water gun. The 3-D data allowed the construction of an accurate velocity model and the distinction of five major seismic facies within the Lower Freshwater Molasse (Aquitanian) and the Quaternary sedimentary units. Additionally, the Plateau Molasse (PM) and Subalpine Molasse (SM) erosional surface, "La Paudeze" thrust fault (PM-SM boundary) and the thickness of Quaternary sediments were accurately delineated in 3-D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the International Olympic Committee (IOC) accredited laboratories, specific methods have been developed to detect anabolic steroids in athletes' urine. The technique of choice to achieve this is gas-chromatography coupled with mass spectrometry (GC-MS). In order to improve the efficiency of anti-doping programmes, the laboratories have defined new analytical strategies. The final sensitivity of the analytical procedure can be improved by choosing new technologies for use in detection, such as tandem mass spectrometry (MS-MS) or high resolution mass spectrometry (HRMS). A better sample preparation using immuno-affinity chromatography (IAC) is also a good tool for improving sensitivity. These techniques are suitable for the detection of synthetic anabolic steroids whose structure is not found naturally in the human body. The more and more evident use, on a large scale, of substances chemically similar to the endogenous steroids obliges both the laboratory and the sports authorities to use the steroid profile of the athlete in comparison with reference ranges from a population or with intraindividual reference values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Whole tumor lysates are promising antigen sources for dendritic cell (DC) therapy as they contain many relevant immunogenic epitopes to help prevent tumor escape. Two common methods of tumor lysate preparations are freeze-thaw processing and UVB irradiation to induce necrosis and apoptosis, respectively. Hypochlorous acid (HOCl) oxidation is a new method for inducing primary necrosis and enhancing the immunogenicity of tumor cells. EXPERIMENTAL DESIGN: We compared the ability of DCs to engulf three different tumor lysate preparations, produce T-helper 1 (TH1)-priming cytokines and chemokines, stimulate mixed leukocyte reactions (MLR), and finally elicit T-cell responses capable of controlling tumor growth in vivo. RESULTS: We showed that DCs engulfed HOCl-oxidized lysate most efficiently stimulated robust MLRs, and elicited strong tumor-specific IFN-γ secretions in autologous T cells. These DCs produced the highest levels of TH1-priming cytokines and chemokines, including interleukin (IL)-12. Mice vaccinated with HOCl-oxidized ID8-ova lysate-pulsed DCs developed T-cell responses that effectively controlled tumor growth. Safety, immunogenicity of autologous DCs pulsed with HOCl-oxidized autologous tumor lysate (OCDC vaccine), clinical efficacy, and progression-free survival (PFS) were evaluated in a pilot study of five subjects with recurrent ovarian cancer. OCDC vaccination produced few grade 1 toxicities and elicited potent T-cell responses against known ovarian tumor antigens. Circulating regulatory T cells and serum IL-10 were also reduced. Two subjects experienced durable PFS of 24 months or more after OCDC. CONCLUSIONS: This is the first study showing the potential efficacy of a DC vaccine pulsed with HOCl-oxidized tumor lysate, a novel approach in preparing DC vaccine that is potentially applicable to many cancers. Clin Cancer Res; 19(17); 4801-15. ©2013 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose(4 ()?())) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose(4) levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose(4) with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose(4), whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Invasive candidiasis is a severe infectious complication occurring mostly in onco-hematologic and surgical patients. Its conventional diagnosis is insensitive and often late, leading to a delayed treatment and a high mortality. The purpose of this article is to review recent contributions in the nonconventional diagnostic approaches of invasive candidiasis, both for the detection of the epidose and the characterization of the etiologic agent. RECENT FINDINGS: Antigen-based tests to detect invasive candidiasis comprise a specific test, mannan, as well as a nonspecific test, beta-D-glucan. Both have a moderate sensitivity and a high specificity, and cannot be recommended alone as a negative screening tool or a positive syndrome driven diagnostic tool. Molecular-based tests still have not reached the stage of rapid, easy to use, standardized tests ideally complementing blood culture at the time of blood sampling. New tests (fluorescence in-situ hybridization or mass spectrometry) significantly reduce the delay of identification of Candida at the species level in positive blood cultures, and should have a positive impact on earlier appropriate antifungal therapy and possibly on outcome. SUMMARY: Both antigen-based and molecular tests appear as promising new tools to complement and accelerate the conventional diagnosis of invasive candidiasis with an expected significant impact on earlier and more focused treatment and on prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fraud is as old as Mankind. There are an enormous number of historical documents which show the interaction between truth and untruth; therefore it is not really surprising that the prevalence of publication discrepancies is increasing. More surprising is that new cases especially in the medical field generate such a huge astonishment. In financial mathematics a statistical tool for detection of fraud is known which uses the knowledge of Newcomb and Benford regarding the distribution of natural numbers. This distribution is not equal and lower numbers are more likely to be detected compared to higher ones. In this investigation all numbers contained in the blinded abstracts of the 2009 annual meeting of the Swiss Society of Anesthesia and Resuscitation (SGAR) were recorded and analyzed regarding the distribution. A manipulated abstract was also included in the investigation. The χ(2)-test was used to determine statistical differences between expected and observed counts of numbers. There was also a faked abstract integrated in the investigation. A p<0.05 was considered significant. The distribution of the 1,800 numbers in the 77 submitted abstracts followed Benford's law. The manipulated abstract was detected by statistical means (difference in expected versus observed p<0.05). Statistics cannot prove whether the content is true or not but can give some serious hints to look into the details in such conspicuous material. These are the first results of a test for the distribution of numbers presented in medical research.