159 resultados para Road images


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road transport emissions are a major contributor to ambient particulate matter concentrations and have been associated with adverse health effects. Therefore, these emissions are targeted through increasingly stringent European emission standards. These policies succeed in reducing exhaust emissions, but do not address "nonexhaust" emissions from brake wear, tire wear, road wear, and suspension in air of road dust. Is this a problem? To what extent do nonexhaust emissions contribute to ambient concentrations of PM10 or PM2.5? In the near future, wear emissions may dominate the remaining traffic-related PM10 emissions in Europe, mostly due to the steep decrease in PM exhaust emissions. This underlines the need to determine the relevance of the wear emissions as a contribution to the existing ambient PM concentrations, and the need to assess the health risks related to wear particles, which has not yet received much attention. During a workshop in 2011, available knowledge was reported and evaluated so as to draw conclusions on the relevance of traffic-related wear emissions for air quality policy development. On the basis of available evidence, which is briefly presented in this paper, it was concluded that nonexhaust emissions and in particular suspension in air of road dust are major contributors to exceedances at street locations of the PM10 air quality standards in various European cities. Furthermore, wear-related PM emissions that contain high concentrations of metals may (despite their limited contribution to the mass of nonexhaust emissions) cause significant health risks for the population, especially those living near intensely trafficked locations. To quantify the existing health risks, targeted research is required on wear emissions, their dispersion in urban areas, population exposure, and its effects on health. Such information will be crucial for environmental policymakers as an input for discussions on the need to develop control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

l'imagerie par résonance magnétique (IRMC) est une technologie utilisée depuis les aimées quatre¬-vingts dans le monde de la cardiologie. Cette technique d'imagerie non-invasive permet d'acquérir Ses images du coeur en trois dimensions, dans n'importe quel, plan, sans application de radiation, et en haute résolution. Actuellement, cette technique est devenue un référence dans l'évaluation et 'l'investigation de différentes pathologies cardiaques. La morphologie cardiaque, la fonction des ventricules ainsi que leur contraction, la perfusion tissulaire ainsi que la viabilité tissulaire peuvent être caractérisés en utilisant différentes séquences d'imagerie. Cependant, cette technologie repose sur des principes physiques complexes et la mise en pratique de cette technique se heurte à la difficulté d'évaluer un organe en mouvement permanent. L'IRM cardiaque est donc sujette à différents artefacts qui perturbent l'interprétation des examens et peuvent diminuer la précision diagnostique de cette technique. A notre connaissance, la plupart des images d'IRMC sont analysées et interprétées sans évaluation rigoureuse de la qualité intrinsèque de l'examen. Jusqu'à présent, et à notre connaissance, aucun critère d'évaluation de la qualité des examens d'IRMC n'a été clairement déterminé. L'équipe d'IRMC du CHUV, dirigée par le Prof J. Schwitter, a recensé une liste de 35 critères qualitatifs et 12 critères quantitatifs évaluant la qualité d'un examen d'IRMC et les a introduit dans une grille d'évaluation. L'objet de cette étude est de décrire et de valider la reproductibilité des critères figurant dans cette grille d'évaluation, par l'interprétation simultanée d'examens IRMC par différents observateurs (cardiologues spécialisés en IRM, étudiant en médecine, infirmière spécialisée). Notre étude a permis de démontrer que les critères définis pour l'évaluation des examens d'IRMC sont robustes, et permettent une bonne reproductibilité intra- et inter-observateurs. Cette étude valide ainsi l'utilisation de ces critères de qualité dans le cadre de l'imagerie par résonance magnétique cardiaque. D'autres études sont encore nécessaires afin de déterminer l'impact de la qualité de l'image sur la précision diagnostique de cette technique. Les critères standardisés que nous avons validés seront utilisés pour évaluer la qualité des images dans le cadre d'une étude à échelle européenne relative à l'IRMC : "l'EuroCMR registry". Parmi les autres utilités visées par ces critères de qualité, citons notamment la possibilité d'avoir une référence d'évaluation de la qualité d'examen pour toutes les futures études cliniques utilisant la technologie d'IRMC, de permettre aux centres d'IRMC de quantifier leur niveau de qualité, voire de créer un certificat de standard de qualité pour ces centres, d'évaluer la reproductibilité de l'évaluation des images par différents observateurs d'un même centre, ou encore d'évaluer précisément la qualité des séquences développées à l'avenir dans le monde de l'IRMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.