76 resultados para Reflective modulator
Resumo:
Rupture of vulnerable plaques is the main cause of acute cardiovascular events. However, mechanisms responsible for transforming a stable into a vulnerable plaque remain elusive. Angiotensin II, a key regulator of blood pressure homeostasis, has a potential role in atherosclerosis. To study the contribution of angiotensin II in plaque vulnerability, we generated hypertensive hypercholesterolemic ApoE-/- mice with either normal or endogenously increased angiotensin II production (renovascular hypertension models). Hypertensive high angiotensin II ApoE-/- mice developed unstable plaques, whereas in hypertensive normal angiotensin II ApoE-/- mice plaques showed a stable phenotype. Vulnerable plaques from high angiotensin II ApoE-/- mice had thinner fibrous cap (P<0.01), larger lipid core (P<0.01), and increased macrophage content (P<0.01) than even more hypertensive but normal angiotensin II ApoE-/- mice. Moreover, in mice with high angiotensin II, a skewed T helper type 1-like phenotype was observed. Splenocytes from high angiotensin II ApoE-/- mice produced significantly higher amounts of interferon (IFN)-gamma than those from ApoE-/- mice with normal angiotensin II; secretion of IL4 and IL10 was not different. In addition, we provide evidence for a direct stimulating effect of angiotensin II on lymphocyte IFN-gamma production. These findings suggest a new mechanism in plaque vulnerability demonstrating that angiotensin II, within the context of hypertension and hypercholesterolemia, independently from its hemodynamic effect behaves as a local modulator promoting the induction of vulnerable plaques probably via a T helper switch.
Resumo:
The Baby and the Couple provides an insider's view on how infant communication develops in the context of the family and how parents either work together as a team or struggle in the process. The authors present vignettes from everyday life as well as case studies from a longitudinal research project of infants and their parents interacting together in the Lausanne Trilogue Play (LTP), an assessment tool for very young families. Divided into three parts, the book focuses not only on the parents, but also on the infant's contribution to the family. Part 1 presents a case study of Lucas and his family, from infancy to age 5. With each chapter we see how, in the context of their families, infants learn to communicate with more than one person at a time. Part 2 explores how infants cope when their parents struggle to work together - excluding, competing or only connecting through their child. The authors follow several case examples from infancy through to early childhood to illustrate various forms of problematic co-parenting, along with the infant's derailed trajectory at different ages and stages. In Part 3, prevention and intervention models based on the LTP are presented. In addition to an overview of these programs, chapters are devoted to the Developmental Systems Consultation, which combines use of the LTP and video feedback, and a new model, Reflective Family Play, which allows whole families to engage in treatment. The Baby and the Couple is a vital resource for professionals working in the fields of infant and preschool mental health including psychiatrists, psychologists, social workers, family therapists and educators, as well as researchers.
Resumo:
Polyhydroxyalkanoates (PHAs) are polyesters of hydroxyacids naturally synthesized in bacteria as a carbon reserve. PHAs have properties of biodegradable thermoplastics and elastomers and their synthesis in crop plants is seen as an attractive system for the sustained production of large amounts of polymers at low cost. A variety of PHAs having different physical properties have now been synthesized in a number of transgenic plants, including Arabidopsis thaliana, rape and corn. This has been accomplished through the creation of novel metabolic pathways either in the cytoplasm, plastid or peroxisome of plant cells. Beyond its impact in biotechnology, PHA production in plants can also be used to study some fundamental aspects of plant metabolism. Synthesis of PHA can be used both as an indicator and a modulator of the carbon flux to pathways competing for common substrates, such as acetyl-coenzyme A in fatty acid biosynthesis or 3-hydroxyacyl-coenzyme A in fatty acid degradation. Synthesis of PHAs in plant peroxisome has been used to demonstrate changes in the flux of fatty acids to the beta-oxidation cycle in transgenic plants and mutants affected in lipid biosynthesis, as well as to study the pathway of degradation of unusual fatty acids.
Resumo:
PURPOSE OF REVIEW: Oculopalatal tremor (OPT) is an acquired disorder resulting from the interruption of a specific brainstem circuitry, the dentato-rubro-olivary pathway or Guillain-Mollaret triangle. The recent literature on OPT and olivary hypertrophy was reviewed with specific interest regarding causes, diagnostic procedures, physiopathology and therapies. RECENT FINDINGS: OPT is associated with inferior olivary hypertrophy, and recent findings have provided a better understanding of its intimate mechanisms. A dual-mechanism model, combining an oscillator (inferior olive) and a modulator/amplifier (cerebellum), best explains the development of OPT. Electrotonic coupling and specific Ca channels contribute to oscillations of inferior olivary nucleus neurons in OPT. Improvement of visual symptoms can be achieved with oral gabapentin or memantine. SUMMARY: Both the neuronal circuitry and the physiopathology of OPT are now better understood. This opens up an era of specific therapy for this rare cause of disabling oscillopsia.
Resumo:
Here, we identify a role for the matrilin-2 (Matn2) extracellular matrix protein in controlling the early stages of myogenic differentiation. We observed Matn2 deposition around proliferating, differentiating and fusing myoblasts in culture and during muscle regeneration in vivo. Silencing of Matn2 delayed the expression of the Cdk inhibitor p21 and of the myogenic genes Nfix, MyoD and Myog, explaining the retarded cell cycle exit and myoblast differentiation. Rescue of Matn2 expression restored differentiation and the expression of p21 and of the myogenic genes. TGF-β1 inhibited myogenic differentiation at least in part by repressing Matn2 expression, which inhibited the onset of a positive-feedback loop whereby Matn2 and Nfix activate the expression of one another and activate myoblast differentiation. In vivo, myoblast cell cycle arrest and muscle regeneration was delayed in Matn2(-/-) relative to wild-type mice. The expression levels of Trf3 and myogenic genes were robustly reduced in Matn2(-/-) fetal limbs and in differentiating primary myoblast cultures, establishing Matn2 as a key modulator of the regulatory cascade that initiates terminal myogenic differentiation. Our data thus identify Matn2 as a crucial component of a genetic switch that modulates the onset of tissue repair.
Resumo:
Endocrine disruption is defined as the perturbation of the endocrine system, which includes disruption of nuclear hormone receptor signalling. Peroxisome proliferator-activated receptors (PPARs) represent a family of nuclear receptors that has not yet been carefully studied with regards to endocrine disruption, despite the fact that PPARs are known to be important targets for xenobiotics. Here we report a first comprehensive approach aimed at defining the mechanistic basis of PPAR disruption focusing on one chemical, the plasticizer monethylhexyl phthalate (MEHP), but using a variety of methodologies and models. We used mammalian cells and a combination of biochemical and live cell imaging techniques to show that MEHP binds to PPAR gamma and selectively regulates interactions with coregulators. Micro-array experiments further showed that this selectivity is translated at the physiological level during adipocyte differentiation. In that context, MEHP functions as a selective PPAR modulator regulating only a subset of PPAR gamma target genes compared to the action of a full agonist. We also explored the action of MEHP on PPARs in an aquatic species, Xenopus laevis, as many xenobiotics are found in aquatic ecosystems. In adult males, micro-array data indicated that MEHP influences liver physiology, possibly through a cross-talk between PPARs and estrogen receptors (ER). In early Xenopus laevis embryos, we showed that PPAR beta/delta exogenous activation by an agonist or by MEHP affects development. Taken together our results widen the concept of endocrine disruption by pinpointing PPARs as key factors in that process.
Resumo:
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including cancer. In the last decade, it became evident that Notch signaling plays important roles within the hematopoietic and immune systems. Notch plays an essential role in the development of embryonic hematopoietic stem cells and influences multiple lineage decisions of developing lymphoid and myeloid cells. Moreover, recent evidence suggests that Notch is an important modulator of T cell-mediated immune responses. In this review, we discuss Notch signaling in hematopoiesis, lymphocyte development, and function as well as in T cell acute lymphoblastic leukemia.
Resumo:
The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect that develops following birth. This dehydration is accompanied with a highly abnormal lipid matrix composition and an impaired skin surface acidification. This strongly suggests a role of ENaC in the maturation of barrier function rather than in the prenatal generation of the barrier, and may be as such an important modulator for skin hydration. In parallel, gene targeting experiments of regulators of ENaC activity, membrane serine proteases, also termed channel activating proteases, like CAP1/Prss8 and matriptase/MT-SP1 by themselves have been shown to be crucial for the epidermal barrier function. In our review, we mainly focus on the role of ENaC and its regulators in the skin and discuss their importance in the epidermal permeability barrier function.
Resumo:
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, due to the immune-mediated destruction of pancreatic β-cells, whose incidence has been steadily increasing during the last decades. Insulin replacement therapy can treat T1DM, which, however, is still associated with substantial morbidity and mortality. For this reason, great effort is being put into developing strategies that could eventually prevent and/or cure this disease. These strategies are mainly focused on blocking the immune system from attacking β-cells together with functional islet restoration either by regeneration or transplantation. Recent experimental evidences suggest that TNFrelated apoptosis-inducing ligand (TRAIL), which is an immune system modulator protein, could represent an interesting candidate for the cure for T1DM and/or its complications. Here we review the evidences on the potential role of TRAIL in the management of T1DM.
Resumo:
BACKGROUND: Red blood cell-derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent. STUDY DESIGN AND METHODS: This study was performed to establish the impact on coagulation of RMPs isolated from blood units. Using calibrated automated thrombography, we investigated whether RMPs affect thrombin generation (TG) in plasma. RESULTS: We found that RMPs were not only able to increase TG in plasma in the presence of a low exogenous tissue factor (TF) concentration, but also to initiate TG in plasma in absence of exogenous TF. TG induced by RMPs in the absence of exogenous TF was neither affected by the presence of blocking anti-TF nor by the absence of Factor (F)VII. It was significantly reduced in plasma deficient in FVIII or F IX and abolished in FII-, FV-, FX-, or FXI-deficient plasma. TG was also totally abolished when anti-XI 01A6 was added in the sample. Finally, neither Western blotting, flow cytometry, nor immunogold labeling allowed the detection of traces of TF antigen. In addition, RMPs did not comprise polyphosphate, an important modulator of coagulation. CONCLUSIONS: Taken together, our data show that RMPs have FXI-dependent procoagulant properties and are able to initiate and propagate TG. The anionic surface of RMPs might be the site of FXI-mediated TG amplification and intrinsic tenase and prothrombinase complex assembly.
Resumo:
Besides tumor cells, the tumor microenvironment harbors a variety of host-derived cells, such as endothelial cells, fibroblasts, innate and adaptive immune cells. It is a complex and highly dynamic environment, providing very important cues to tumor development and progression. Tumor-associated endothelial cells play a key role in this process. On the one hand, they form tumor-associated (angiogenic) vessels through sprouting from locally preexisting vessels or recruitment of bone marrow-derived endothelial progenitor cells, to provide nutritional support to the growing tumor. On the other hand, they are the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby playing a central role in controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia is a critical parameter modulating the tumor microenvironment and endothelial/tumor cell interactions. Under hypoxic stress, tumor cells produce factors that promote tumor angiogenesis, tumor cell motility and metastasis. Among these factors, VEGF, a main angiogenesis modulator, can also play a critical role in the control of immune tolerance. This review discusses some aspects of the role of endothelial cells within tumor microenvironment and emphasizes their interaction with tumor cells, the extracellular matrix and with immune killer cells. We will also address the role played by circulating endothelial progenitor cells and illustrate their features and mechanism of recruitment to the tumor microenvironment and their role in tumor angiogenesis.
Resumo:
AbstractType 2 diabetes (T2D) is a metabolic disease which affects more than 200 millions people worldwide. The progression of this affection reaches nowadays epidemic proportions, owing to the constant augmentation in the frequency of overweight, obesity and sedentary. The pathogenesis of T2D is characterized by reduction in the action of insulin on its target tissues - an alteration referred as insulin resistance - and pancreatic β-cell dysfunction. This latter deterioration is defined by impairment in insulin biosynthesis and secretion, and a loss of β-cell mass by apoptosis. Environmental factors related to T2D, such as chronic elevation in glucose and free fatty acids levels, inflammatory cytokines and pro-atherogenic oxidized low- density lipoproteins (LDL), contribute to the loss of pancreatic β-cell function.In this study, we have demonstrated that the transcription factor Inducible Cyclic AMP Early Repressor (ICER) participates to the progression of both β-cell dysfunction and insulin resistance. The expression of this factor is driven by an alternative promoter and ICER protein represents therefore a truncated product of the Cyclic AMP Response Element Modulator (CREM) family which lacks transactivation domain. Consequently, the transcription factor ICER acts as a passive repressor which reduces expression of genes controlled by the cyclic AMP and Cyclic AMP Response Element Binding protein (CREB) pathway.In insulin-secreting cells, the accumulation of reactive oxygen species caused by environmental factors and notably oxidized LDL - a process known as oxidative stress - induces the transcription factor ICER. This transcriptional repressor hampers the secretory capacity of β-cells by silencing key genes of the exocytotic machinery. In addition, the factor ICER reduces the expression of the scaffold protein Islet Brain 1 (IB 1 ), thereby favouring the activation of the c-Jun N-terminal Kinase (JNK) pathway. This triggering alters in turn insulin biosynthesis and survival capacities of pancreatic β-cells.In the adipose tissue of mice and human subjects suffering from obesity, the transcription factor ICER contributes to the alteration in insulin action. The loss in ICER protein in these tissues induces a constant activation of the CREB pathway and the subsequent expression of the Activating Transcription Factor 3 (ATF3). In turn, this repressor reduces the transcript levels of the glucose transporter GLUT4 and the insulin-sensitizer peptide adiponectin, thereby contributing to the diminution in insulin action.In conclusion, these data shed light on the important role of the transcriptional repressor ICER in the pathogenesis of T2D, which contributes to both alteration in β-cell function and aggravation of insulin resistance. Consequently, a better understanding of the molecular mechanisms responsible for the alterations in ICER levels is required and could lead to develop new therapeutic strategies for the treatment of T2D.RésuméLe diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. La progression de cette affection atteint aujourd'hui des proportions épidémiques imputables à l'augmentation rapide dans les fréquences du surpoids, de l'obésité et de la sédentarité. La pathogenèse du DT2 se caractérise par une diminution de l'action de l'insuline sur ses tissus cibles - un processus nommé insulino-résistance - ainsi qu'une dysfonction des cellules β pancréatiques sécrétrices d'insuline. Cette dernière détérioration se définit par une réduction de la capacité de synthèse et de sécrétion de l'insuline et mène finalement à une perte de la masse de cellules β par apoptose. Des facteurs environnementaux fréquemment associés au DT2, tels l'élévation chronique des taux plasmatiques de glucose et d'acides gras libres, les cytokines pro-inflammatoires et les lipoprotéines de faible densité (LDL) oxydées, contribuent à la perte de fonction des cellules β pancréatiques.Dans cette étude, nous avons démontré que le facteur de transcription « Inducible Cyclic AMP Early Repressor » (ICER) participe à la progression de la dysfonction des cellules β pancréatiques et au développement de Pinsulino-résistance. Son expression étant gouvernée par un promoteur alternatif, la protéine d'ICER représente un produit tronqué de la famille des «Cyclic AMP Response Element Modulator » (CREM), sans domaine de transactivation. Par conséquent, le facteur ICER agit comme un répresseur passif qui réduit l'expression des gènes contrôlés par la voie de l'AMP cyclique et des « Cyclic AMP Response Element Binding protein » (CREB).Dans les cellules sécrétrices d'insuline, l'accumulation de radicaux d'oxygène libres, soutenue par les facteurs environnementaux et notamment les LDL oxydées - un processus appelé stress oxydatif- induit de manière ininterrompue le facteur de transcription ICER. Ainsi activé, ce répresseur transcriptionnel altère la capacité sécrétoire des cellules β en bloquant l'expression de gènes clés de la machinerie d'exocytose. En outre, le facteur ICER favorise l'activation de la cascade de signalisation « c-Jun N- terminal Kinase » (JNK) en réduisant l'expression de la protéine « Islet Brain 1 » (IB1), altérant ainsi les fonctions de biosynthèse de l'insuline et de survie des cellules β pancréatiques.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur de transcription ICER contribue à l'altération de la réponse à l'insuline. La disparition de la protéine ICER dans ces tissus entraîne une activation persistante de la voie de signalisation des CREB et une induction du facteur de transcription « Activating Transcription Factor 3 » (ATF3). A son tour, le répresseur ATF3 inhibe l'expression du transporteur de glucose GLUT4 et du peptide adipocytaire insulino-sensibilisateur adiponectine, contribuant ainsi à la diminution de l'action de l'insuline en conditions d'obésité.En conclusion, à la lumière de ces résultats, le répresseur transcriptionnel ICER apparaît comme un facteur important dans la pathogenèse du DT2, en participant à la perte de fonction des cellules β pancréatiques et à l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes moléculaires responsables de l'altération des niveaux du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.Résumé didactiqueL'énergie nécessaire au bon fonctionnement de l'organisme est fournie par l'alimentation, notamment sous forme de sucres (glucides). Ceux-ci sont dégradés en glucose, lequel sera distribué aux différents organes par la circulation sanguine. Après un repas, le niveau de glucose sanguin, nommé glycémie, s'élève et favorise la sécrétion d'une hormone appelée insuline par les cellules β du pancréas. L'insuline permet, à son tour, aux organes, tels le foie, les muscles et le tissu adipeux de capter et d'utiliser le glucose ; la glycémie retrouve ainsi son niveau basai.Le diabète de type 2 (DT2) est une maladie métabolique qui affecte plus de 200 millions de personnes dans le monde. Le développement de cette affection est causée par deux processus pathologiques. D'une part, les quantités d'insuline secrétée par les cellules β pancréatiques, ainsi que la survie de ces cellules sont réduites, un phénomène connu sous le nom de dysfonction des cellules β. D'autre part, la sensibilité des tissus à l'insuline se trouve diminuée. Cette dernière altération, l'insulino-résistance, empêche le transport et l'utilisation du glucose par les tissus et mène à une accumulation de ce sucre dans le sang. Cette stagnation de glucose dans le compartiment sanguin est appelée hyperglycémie et favorise l'apparition des complications secondaires du diabète, telles que les maladies cardiovasculaires, l'insuffisance rénale, la cécité et la perte de sensibilité des extrémités.Dans cette étude, nous avons démontré que le facteur ICER qui contrôle spécifiquement l'expression de certains gènes, contribue non seulement à la dysfonction des cellules β, mais aussi au développement de l'insulino-résistance. En effet, dans les cellules β pancréatiques en conditions diabétiques, l'activation du facteur ICER altère la capacité de synthèse et de sécrétion d'insuline et réduit la survie ces cellules.Dans le tissu adipeux des souris et des sujets humains souffrant d'obésité, le facteur ICER contribue à la perte de sensibilité à l'insuline. La disparition d'ICER altère l'expression de la protéine qui capte le glucose, le transoprteur GLUT4, et l'hormone adipocytaire favorisant la sensibilité à l'insuline, nommée adiponectine. Ainsi, la perte d'ICER participe à la réduction de la captation de glucose par le tissue adipeux et au développement de l'insulino-résistance au cours de l'obésité.En conclusion, à la lumière de ces résultats, le facteur ICER apparaît comme un contributeur important à la progression du DT2, en soutenant la dysfonction des cellules β pancréatiques et l'aggravation de l'insulino-résistance. Par conséquent, l'étude des mécanismes responsables de la dérégulation du facteur ICER pourrait permettre le développement de nouvelles stratégies de traitement du DT2.
Resumo:
ABSTRACT: INTRODUCTION: Prospective epidemiologic studies have consistently shown that levels of circulating androgens in postmenopausal women are positively associated with breast cancer risk. However, data in premenopausal women are limited. METHODS: A case-control study nested within the New York University Women's Health Study was conducted. A total of 356 cases (276 invasive and 80 in situ) and 683 individually-matched controls were included. Matching variables included age and date, phase, and day of menstrual cycle at blood donation. Testosterone, androstenedione, dehydroandrosterone sulfate (DHEAS) and sex hormone-binding globulin (SHBG) were measured using direct immunoassays. Free testosterone was calculated. RESULTS: Premenopausal serum testosterone and free testosterone concentrations were positively associated with breast cancer risk. In models adjusted for known risk factors of breast cancer, the odds ratios for increasing quintiles of testosterone were 1.0 (reference), 1.5 (95% confidence interval (CI), 0.9 to 2.3), 1.2 (95% CI, 0.7 to 1.9), 1.4 (95% CI, 0.9 to 2.3) and 1.8 (95% CI, 1.1 to 2.9; Ptrend = 0.04), and for free testosterone were 1.0 (reference), 1.2 (95% CI, 0.7 to 1.8), 1.5 (95% CI, 0.9 to 2.3), 1.5 (95% CI, 0.9 to 2.3), and 1.8 (95% CI, 1.1 to 2.8, Ptrend = 0.01). A marginally significant positive association was observed with androstenedione (P = 0.07), but no association with DHEAS or SHBG. Results were consistent in analyses stratified by tumor type (invasive, in situ), estrogen receptor status, age at blood donation, and menopausal status at diagnosis. Intra-class correlation coefficients for samples collected from 0.8 to 5.3 years apart (median 2 years) in 138 cases and 268 controls were greater than 0.7 for all biomarkers except for androstenedione (0.57 in controls). CONCLUSIONS: Premenopausal concentrations of testosterone and free testosterone are associated with breast cancer risk. Testosterone and free testosterone measurements are also highly reliable (that is, a single measurement is reflective of a woman's average level over time). Results from other prospective studies are consistent with our results. The impact of including testosterone or free testosterone in breast cancer risk prediction models for women between the ages of 40 and 50 years should be assessed. Improving risk prediction models for this age group could help decision making regarding both screening and chemoprevention of breast cancer.
Resumo:
PURPOSE: To compare the efficacy and safety of T-Flux implant versus Healon GV in deep sclerectomy. METHODS: Randomized prospective trial of 23 eyes of 20 patients with medically uncontrolled open angle glaucoma over a period of 24 months, who underwent deep sclerectomy with either Healon GV or T-Flux implant. RESULTS: Mean postoperative intraocular pressure was 13.2 +/- 3.0 mm Hg with T-Flux implant (group 1) and 12.2 +/- 3.5 mm Hg with Healon GV (group 2), with a pressure reduction of 53.0% in group 1 (13.2 mm Hg vs. 28.1 mm Hg) and of 48.1% in group 2 (12.2 mm Hg vs. 23.5 mm Hg). Qualified and complete successes were 100% and 95.4% respectively. Pressures equal to or less than 15 mm Hg were 81.8% in group 1 and 90.9% in group 2 with or without treatment, and 63.6% in group 1 and 81.8% in group 2 without treatment. The number of glaucoma treatments dropped from 2.5 +/- 0.9 to 0.4 +/- 0.7 in group 1 and from 2.2 +/- 1.0 to 0.2 +/- 0.4 in group 2. The goniopuncture rate was 63.6% in group 1 and 36.4% in group 2, with a mean pressure drop of 6.1 +/- 3.9 mm Hg and 3.25 +/- 1.2 mm Hg respectively. Overall, slit-lamp diagnosed surgery-related complications included positive Seidel (13.6%), hyphaema (22.7%), choroidal detachment, and iris incarceration (4.5% each). At 2 years, ultrasound biomicroscopy showed mainly low reflective (40.1%) and flattened (36.4%) blebs. Principally latter ones were associated with the need for adjunctive treatment. A hypoechoic area in the suprachoroidal space was seen in at least 59.1% of eyes at 2 years and was not associated with lower intraocular pressure. CONCLUSION: Deep sclerectomy is an effective and safe surgery. However, longer follow up and larger study groups are required to assess the additional benefit of nonabsorbable implants.
Resumo:
The role of competition for light among plants has long been recognized at local scales, but its potential importance for plant species' distribution at larger spatial scales has largely been ignored. Tree cover acts as a modulator of local abiotic conditions, notably by reducing light availability below the canopy and thus the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains. Using 6,935 vegetation plots located across the European Alps, we fit Generalized Linear Models (GLM) for the distribution of 960 herbs and shrubs species to assess the effect of tree cover at both plot and landscape grain sizes (~ 10-m and 1-km, respectively). We ran four models with different combinations of variables (climate, soil and tree cover) for each species at both spatial grains. We used partial regressions to evaluate the independent effects of plot- and landscape-scale tree cover on plant communities. Finally, the effects on species' elevational range limits were assessed by simulating a removal experiment comparing the species' distribution under high and low tree cover. Accounting for tree cover improved model performance, with shade-tolerant species increasing their probability of presence at high tree cover whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both plot and landscape spatial grains, albeit strongest at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-scale plant communities, suggesting that the effects may be transmitted to coarser grains through meta-community dynamics. At high tree cover, shade-intolerant species exhibited elevational range contractions, especially at their upper limit, whereas shade-tolerant species showed elevational range expansions at both limits. Our findings suggest that the range shifts for herb and shrub species may be modulated by tree cover dynamics.