124 resultados para RICH DIET
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Diet composition, in particular fat intake, has been suggested to be a risk factor for obesity in humans. Several mechanisms may contribute to explain the impact of fat intake on fat gain. One factor may be the low thermogenesis induced by a mixed meal rich in fat. In a group of 11 girls (10.1 +/- 0.3 yr), 6 obese (body mass index, 25.6 +/- 0.6 kg/m(2)), and 5 nonobese (body mass index, 19 +/- 1.6 kg/m(2)), we tested the hypothesis that a mixed meal rich in fat can elicit energy saving compared with an isocaloric and isoproteic meal rich in carbohydrate. The postabsorptive resting energy expenditure and the thermic effect of a meal (TEM) after a low fat (LF; 20% fat, 68% carbohydrate, and 12% protein) or an isocaloric (2500 kJ or 600 Cal) and isoproteic high fat (HF; 48% fat, 40% carbohydrate, and 12% protein) meal were measured by indirect calorimetry. Each girl repeated the test with a different, randomly assigned menu (HF or LF) 1 week after the first test. TEM, expressed as a percentage of energy intake was significantly higher after a LF meal than after a HF meal (6.5 +/- 0.7% vs. 4.3 +/- 0.4%; P < 0.01). The postprandial respiratory quotient (RQ) was significantly higher after a LF meal than after a HF meal (0.86 +/- 0.013 vs. 0.83 +/- 0.014; P < 0.001). The HF low carbohydrate meal induced a significantly lower increase in carbohydrate oxidation than the LF meal (20.3 +/- 6.2 vs. 61.3 +/- 7.8 mg/min; P < 0.001). On the contrary, fat oxidation was significantly higher after a HF meal than after a LF meal (-1.3 +/- 2.4 vs. -15.1 +/- 3.6 mg/min; P < 0.01). However, the postprandial fat storage was 8-fold higher after a HF meal than after a LF meal (17.2 +/- 1.7 vs. 1.9 +/- 1.8 g; P < 0.001). These results suggest that a high fat meal is able to induce lower thermogenesis and a higher positive fat balance than an isocaloric and isoproteic low fat meal. Therefore, diet composition per se must be taken into account among the various risk factors that induce obesity in children.
Resumo:
BACKGROUND: Along the chromosome of the obligate intracellular bacteria Protochlamydia amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila: lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed LGRs since encoded by "Large G+C-Rich" genes. RESULTS: No homologs to the whole protein sequence of LGRs were found in other organisms. Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains (LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic (28-meric) LRRs of LGRs present all a predicted alpha-helix conformation. Their closest homologs are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits Pfam domains related to DNA metabolism. CONCLUSION: Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins and Toll-like receptors.
Resumo:
There is growing evidence that consumption of a Western diet is a risk factor for osteoporosis through excess acid supply, while fruits and vegetables balance the excess acidity, mostly by providing K-rich bicarbonate-rich foods. Western diets consumed by adults generate approximately 50-100 mEq acid/d; therefore, healthy adults consuming such a diet are at risk of chronic low-grade metabolic acidosis, which worsens with age as a result of declining kidney function. Bone buffers the excess acid by delivering cations and it is considered that with time an overstimulation of this process will lead to the dissolution of the bone mineral content and hence to reduced bone mass. Intakes of K, Mg and fruit and vegetables have been associated with a higher alkaline status and a subsequent beneficial effect on bone health. In healthy male volunteers an acid-forming diet increases urinary Ca excretion by 74% and urinary C-terminal telopeptide of type I collagen (C-telopeptide) excretion by 19% when compared with an alkali (base-forming) diet. Cross-sectional studies have shown that there is a correlation between the nutritional acid load and bone health measured by bone ultrasound or dual-energy X-ray absorptiometry. Few studies have been undertaken in very elderly women (>75 years), whose osteoporosis risk is very pertinent. The EVAluation of Nutrients Intakes and Bone Ultra Sound Study has developed and validated (n 51) an FFQ for use in a very elderly Swiss population (mean age 80.4 (sd 2.99) years), which has shown intakes of key nutrients (energy, fat, carbohydrate, Ca, Mg, vitamin C, D and E) to be low in 401 subjects. A subsequent study to assess net endogenous acid production (NEAP) and bone ultrasound results in 256 women aged > or = 75 years has shown that lower NEAP (P=0.023) and higher K intake (P=0.033) are correlated with higher bone ultrasound results. High acid load may be an important additional risk factor that may be particularly relevant in very elderly patients with an already-high fracture risk. The latter study adds to knowledge by confirming a positive link between dietary alkalinity and bone health indices in the very elderly. In a further study to complement these findings it has also been shown in a group of thirty young women that in Ca sufficiency an acid Ca-rich water has no effect on bone resorption, while an alkaline bicarbonate-rich water leads to a decrease in both serum parathyroid hormone and serum C-telopeptide. Further investigations need to be undertaken to study whether these positive effects on bone loss are maintained over long-term treatment. Mineral-water consumption could be an easy and inexpensive way of helping to prevent osteoporosis and could be of major interest for long-term prevention of bone loss.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.
Resumo:
Only a few studies, and mostly in temperate climates in Europe, have examined the breeding and diet of long-eared owls (Asia otus) compared to studies of cavity-breeding owls, possibly because of the difficulties in reaching the nests of the former. Here we studied a population of long-eared owls, monitoring the diet of breeding owls and that of owls at a communal roost, every two to three months during 2006 -2009, in a semi-arid region in Israel. It was found that the studied owls produced more young than in most countries in Europe. Diet was not associated with breeding parameters of the owls, whereas laying date was negatively correlated with both clutch size and number of nestlings. We found that more social voles (Microtus socialis) and fewer birds and house mice (Mus musculus) made up the diet at nests than that of adults at the roosts. The diet and breeding of long-eared owls in Israel differ from that in Europe, with birds and mice comprising an important part of the diet, in addition to voles.
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
AimSmall body size in Madagascar's dwarf and mouse lemurs (Cheirogaleidae) is generally viewed as primitive. We investigated the evolution of body size in this family and in its sister-taxon, the Lepilemuridae, from phylogenetic, ontogenetic and adaptive perspectives. LocationMadagascar. MethodsWe used a phylogenetic method to reconstruct the evolution of body size in lemurs, and allometric regression models of gestation periods and static and growth allometries in Cheirogaleidae and Lepilemuridae to test the hypothesis that dwarfing occurred as a result of truncated ontogeny (progenesis). We also examined adaptive hypotheses relating body size to environmental variability, life history, seasonality of reproduction, hypothermy (use of torpor), and a diet rich in plant exudates. ResultsOur results indicated that cheirogaleids experienced at least four independent events of body size reduction from an ancestor as large as living Lepilemuridae, by means of progenesis. Our interpretation is supported by the paedomorphic appearance and parallel ontogenetic trajectories of the dwarf taxa, as well as their very short gestation periods and increased fecundity. Lepilemur species that occupy more predictable environments are significantly larger than those occupying unpredictable habitats. Main conclusionsCheirogaleidae appear to be paedomorphic dwarfs, a consequence of progenesis, probably as an adaptation to high environmental unpredictability. Although the capacity to use hypothermy is related to small body size, this advantage is unlikely to have driven dwarfing in cheirogaleids. We propose that gummmivory/exudativory co-evolved with body size reduction in this clade, probably from a folivorous ancestor. Their small size is derived, and their suitability as models for the ancestral primate' is therefore dubious.
Resumo:
We investigated the association between diet and head and neck cancer (HNC) risk using data from the International Head and Neck Cancer Epidemiology (INHANCE) consortium. The INHANCE pooled data included 22 case-control studies with 14,520 cases and 22,737 controls. Center-specific quartiles among the controls were used for food groups, and frequencies per week were used for single food items. A dietary pattern score combining high fruit and vegetable intake and low red meat intake was created. Odds ratios (OR) and 95% confidence intervals (CI) for the dietary items on the risk of HNC were estimated with a two-stage random-effects logistic regression model. An inverse association was observed for higher-frequency intake of fruit (4th vs. 1st quartile OR = 0.52, 95% CI = 0.43-0.62, p (trend) < 0.01) and vegetables (OR = 0.66, 95% CI = 0.49-0.90, p (trend) = 0.01). Intake of red meat (OR = 1.40, 95% CI = 1.13-1.74, p p (trend) < 0.01) was positively associated with HNC risk. Higher dietary pattern scores, reflecting high fruit/vegetable and low red meat intake, were associated with reduced HNC risk (per score increment OR = 0.90, 95% CI = 0.84-0.97).
Resumo:
Abstract: The AU-rich elements (AREs) consisting of repeated AUUUA motifs confer rapid degradation to many cellular mRNAs when present in the 3' untranslated region (3'UTR). We have studied the instability of interleukin-6 mRNA by grafting its 3' untranslated region to a stable green fluorescent protein mRNA. Subsequent scanning mutagenesis identified two conserved elements, which taken together account for most of the instability. The first corresponds to a short non-canonical AU-rich element. The other comprises a sequence predicted to form astern-loop structure. Both elements need to be present in order to confer full instability (Paschoud et al. 2006). Destabilization of ARE-containing mRNAs is thought to involve ARE-binding proteins such as AUF1. We tested whether AUF1 binding to interleukin-6 mRNA correlates with decreased mRNA stability. Overexpression of myc-tagged p37AUFl and p42AUF1 as well as suppression of all four AUF1 isoforms by RNA interference stabilized the interleukin-6 mRNA. Furthermore, the interleukin-6 mRNA co-immunoprecipitated specifically with myc-tagged p37AUF1 and p42AUF1 in cell extracts. Both the stabilization and AUF1-binding required the non-canonical AU-rich sequence. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes interleukin6 mRNA degradation. The combination of mRNA co-immunoprecipitation with microarray technology revealed that at least 500 cellular mRNAs associate with AUF1. Résumé: "La présence d'éléments riches en A et U (ARE), en particulier les motifs répétés d'AUUUA dans la région 3' non traduite, confère une dégradation rapide à beaucoup d'ARN cellulaires. Nous avons étudié l'instabilité de l'ARN codant pour l'interleukine 6 en greffant sa région 3' non traduite à un ARN stable codant pour la protéine fluorescente verte. La mutagenèse systématique des séquences non traduites a permis l'identification de deux éléments conservés qui confèrent l'instabilité à l'ARN. Le premier correspond à un élément AU-riche non canonique court. Le second comporte une structure en 'épingle à cheveux'. Tous les deux éléments doivent être présents afin de conférer une instabilité complète (Paschoud et al. 2006). On pense que des protéines telles que AUF1, pouvant se lier aux éléments ARE, sont impliquées dans la dégradation des ARN messagers. Nous avons examiné si la liaison de AUFl sur l'ARN de l'interleukine 6 corrèle avec une stabilité diminuée. La surexpression des protéines p37AUF1 et de p42AUF1 myc-étiquetées ainsi que la suppression de chacun des quatre isoformes de AUF1 par interférence d'ARN a stabilisé l'ARN messager d'interleukine 6. En outre, cet ARN co-immunoprécipite spécifiquement avec p37AUF1 et p42AUF1 dans des extraits cellulaires. La présence de l'élément AUriche non canonique est nécessaire pour la stabilisation de l'ARN et sa liaison avec AUFI. Ces résultats indiquent qu'AUF1 se lie à l'élément AU-riche in vivo et favorise la dégradation de l'ARN messager d'interleukine 6. La combinaison des techniques de coimmunoprécipitation des ARN messagers et des analyses par `microarray' indique qu'au moins 500 ARN cellulaires s'associent à AUF1.
Resumo:
We have reported that ingesting a meal immediately after exercise increased skeletal muscle accretion and less adipose tissue accumulation in rats employed in a 10 week resistance exercise program. We hypothesized that a possible increase in the resting metabolic rate (RMR) as a result of the larger skeletal muscle mass might be responsible for the less adipose deposition. Therefore, the effect of the timing of a protein supplement after resistance exercise on body composition and the RMR was investigated in 17 slightly overweight men. The subjects participated in a 12-week weight reduction program consisting of mild energy restriction (17% energy intake reduction) and a light resistance exercise using a pair of dumbbells (3-5 kg). The subjects were assigned to two groups. Group S ingested a protein supplement (10 g protein, 7 g carbohydrate, 3.3 g fat and one-third of recommended daily allowance (RDA) of vitamins and minerals) immediately after exercise. Group C did not ingest the supplement. Daily intake of both energy and protein was equal between the two groups and the protein intake met the RDA. After 12 weeks, the bodyweight, skinfold thickness, girth of waist and hip and percentage bodyfat significantly decreased in the both groups, however, no significant differences were observed between the groups. The fat-free mass significantly decreased in C, whereas its decrease in S was not significant. The RMR and post-meal total energy output significantly increased in S, while these variables did not change in C. In addition, the urinary nitrogen excretion tended to increase in C but not in S. These results suggest that the RMR increase observed in S might be associated with an increase in body protein synthesis.
Resumo:
OBJECTIVE: Reliable data about the nutrient intake of elderly noninstitutionalized women in Switzerland is lacking. The aim of this study was to assess the energy and nutrient intake in this specific population. SUBJECTS: The 401 subjects were randomly selected women of mean age of 80.4 years (range 75-87) recruited from the Swiss SEMOF (Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk) cohort study. A validated food frequency questionnaire (FFQ) was submitted to the 401 subjects to assess dietary intake. RESULTS: The FFQ showed a mean daily energy intake of 1544 kcal (+/-447.7). Protein intake was 65.2 g (+/-19.9), that is 1.03 g kg(-1) body weight per day. The mean daily intake for energy, fat, carbohydrate, calcium, magnesium, vitamin C, D and E were below the RNI. However, protein, phosphorus, potassium, iron and vitamin B6 were above the RNI. CONCLUSION: The mean nutrient intake of these free living Swiss elderly women was low compared with standards. Energy dense foods rich in carbohydrate, magnesium, calcium, vitamin D and E as well as regular sunshine exposure is recommended in order to optimise dietary intake.