223 resultados para REGULATES APOPTOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renin secretion is regulated by coordinated signaling between the various cells of the juxtaglomerular apparatus. The renin-secreting cells (RSC), which play a major role in the control of blood pressure, are coupled to each other and to endothelial cells by Connexin40 (Cx40)-containing channels. In this study, we show that Cx40 knockout (Cx40-/-) mice, but not their heterozygous littermates, are hypertensive due to the increase in the number of RSC, renin biosynthesis, and plasma renin. Treatment with the angiotensin II receptor AT1 antagonist candesartan or the angiotensin II-converting enzyme inhibitor ramipril reduced the blood pressure of the Cx40-/- mice to the same levels seen in wild-type (WT) mice. The elevated blood pressure of the knockout mice was not affected by clipping one renal artery (2K1C, renin-dependent model of hypertension) or after a high salt diet. Under these conditions, however, Cx40-/- mice showed an altered production and release of renin. The renin mRNA ratio between the clipped and the non-clipped kidney was lower in the knockout than in the WT 2K1C mice. This indicates that the response to a change in blood pressure was altered. The RSC of the Cx40-/- mice did not have a compensatory increase in the levels of either Cx43 or Cx37. Our data show that renin secretion is dependent on Cx40 and suggest the Cx40-/- mice may be a genetic model of renin-dependent hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hes1, a major target gene in Notch signaling, regulates the fate and differentiation of various cell types in many developmental systems. To gain a novel insight into the role of Hes1 in corneal tissue, we performed gain-of-function and loss-of-function studies. We show that corneal development was severely disturbed in Hes1-null mice. Hes1-null corneas manifested abnormal junctional specialization, cell differentiation, and less cell proliferation ability. Worthy of note, Hes1 is expressed mainly in the corneal epithelial stem/progenitor cells and is not detected in the differentiated corneal epithelial cells. Expression of Hes1 is closely linked with corneal epithelial stem/progenitor cell proliferation activity in vivo. Moreover, forced Hes1 expression inhibits the differentiation of corneal epithelial stem/progenitor cells and maintains these cells' undifferentiated state. Our data provide the first evidence that Hes1 regulates corneal development and the homeostatic function of corneal epithelial stem/progenitor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs. Unexpectedly, we found Bcl10 in a complex with the clathrin adaptors AP1 and EpsinR. In particular, Bcl10 was required to locally deliver the vesicular OCRL phosphatase that regulates PI(4,5)P(2) and F-actin turnover, both crucial for the completion of phagosome closure. Thus, we identify Bcl10 as an early coordinator of NF-κB-mediated immune response with endosomal trafficking and signaling to F-actin remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM. STEM CELLS 2012;30:405-414.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NOD2 functions as an intracellular sensor for microbial pathogen and plays an important role in epithelial defense. The loss-of-function mutation of NOD2 is strongly associated with human Crohn's disease (CD). However, the mechanisms of how NOD2 maintains the intestinal homeostasis and regulates the susceptibility of CD are still unclear. Here we found that the numbers of intestinal intraepithelial lymphocytes (IELs) were reduced significantly in Nod2(-/-) mice and the residual IELs displayed reduced proliferation and increased apoptosis. Further study showed that NOD2 signaling maintained IELs via recognition of gut microbiota and IL-15 production. Notably, recovery of IELs by adoptive transfer could reduce the susceptibility of Nod2(-/-) mice to the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Our results demonstrate that recognition of gut microbiota by NOD2 is important to maintain the homeostasis of IELs and provide a clue that may link NOD2 variation to the impaired innate immunity and higher susceptibility in CD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ornamental colours usually evolve as honest signals of quality, which is supported by the fact that they frequently depend on individual condition. It has generally been suggested that some, but not all types of ornamental colours are condition dependent, indicating that different evolutionary mechanisms underlie the evolution of multiple types of ornamental colours even when these are exhibited by the same species. Stress hormones, which negatively affect condition, have been shown to affect colour traits based on different pigments and structures, suggesting that they mediate condition dependence of multiple ornament types both among and within individuals. However, studies investigating effects of stress hormones on different ornament types within individuals are lacking, and thus, evidence for this hypothesis is scant. Here, we investigated whether corticosterone mediates condition dependence of multiple ornaments by manipulating corticosterone levels and body condition (via food availability) using a two-factorial design and by assessing their effect on multiple colour traits in male common lizards. Corticosterone negatively affected ventral melanin- and carotenoid-based coloration, whereas food availability did not affect coloration, despite its significant effect on body condition. The corticosterone effect on melanin- and carotenoid-based coloration demonstrates the condition dependence of both ornaments. Moreover, corticosterone affected ventral coloration and had no effect on the nonsexually selected dorsal coloration, showing specific effects of corticosterone on ornamental ventral colours. This suggests that corticosterone simultaneously mediates condition dependence of multiple colour traits and that it therefore accounts for covariation among them, which may influence their evolution via correlational selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandin E(2) (PGE(2)) promotes angiogenesis by in part inducing endothelial cell survival and migration. The present study examined the role of mTOR and its two complexes, mTORC1 and mTORC2, in PGE(2)-mediated endothelial cell responses. We used small interfering RNA (siRNA) to raptor or rictor to block mTORC1 or mTORC2, respectively. We observed that down-regulation of mTORC2 but not mTORC1 reduced baseline and PGE(2)-induced endothelial cell survival and migration. At the molecular level, we found that knockdown of mTORC2 inhibited PGE(2)-mediated Rac and Akt activation two important signaling intermediaries in endothelial cell migration and survival, respectively. In addition, inhibition of mTORC2 by prolonged exposure of endothelial cells to rapamycin also prevented PGE(2)-mediated endothelial cell survival and migration confirming the results obtained with the siRNA approach. Taken together these results show that mTORC2 but not mTORC1 is an important signaling intermediary in PGE(2)-mediated endothelial cell responses.