68 resultados para Query clustering
Resumo:
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by thirty-five families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.
Resumo:
Patients with Temporal Lobe Epilepsy (TLE) suffer from widespread subtle white matter abnormalities and abnormal functional connectivity extending beyond the affected lobe, as revealed by Diffusion Tensor MR Imaging, volumetric and functional MRI studies. Diffusion Spectrum Imaging (DSI) is a diffusion imaging technique with high angular resolution for improving the mapping of white matter pathways. In this study, we used DSI, connectivity matrices and topological measures to investigate how the alteration in structural connectivity influences whole brain structural networks. Eleven patients with right-sided TLE and hippocampal sclerosis and 18 controls underwent our DSI protocol at 3T. The cortical and subcortical grey matters were parcellated into 86 regions of interest and the connectivity between every region pair was estimated using global tractography and a connectivity matrix (the adjacency matrix of the structural network). We then compared the networks of patients and controls using topological measures. In patients, we found a higher characteristic path length and a lower clustering coefficient compared to controls. Local measures at node level of the clustering and efficiency showed a significant difference after a multiple comparison correction (Bonferroni). These significant nodes were located within as well outside the temporal lobe, and the localisation of most of them was consistent with regions known to be part of epileptic networks in TLE. Our results show altered connectivity patterns that are concordant with the mapping of functional epileptic networks in patients with TLE. Further studies are needed to establish the relevance of these findings for the propagation of epileptic activity, cognitive deficits in medial TLE and outcome of epilepsy surgery in individual patients.
Resumo:
Lentivector-mediated transgenesis is increasingly used, whether for basic studies as an alternative to pronuclear injection of naked DNA or to test candidate gene therapy vectors. In an effort to characterize the genetic features of this approach, we first measured the frequency of germ line transmission of individual proviruses established by infection of fertilized mouse oocytes. Seventy integrants from 11 founder (G0) mice were passed to 111 first generation (G1) pups, for a total of 255 events corresponding to an average rate of transmission of 44%. This implies that integration had most often occurred at the one- or two-cell stage and that the degree of genotypic mosaicism in G0 mice obtained through this approach is generally minimal. Transmission analysis of eight individual proviruses in 13 G2 mice obtained by a G0-G1 cross revealed only 8% of proviral homozygosity, significantly below the 25% expected from purely Mendelian transmission, suggesting counter-selection due to interference with the functions of targeted loci. Mapping of 239 proviral integration sites in 49 founder animals revealed that about 60% resided within annotated genes, with a marked tendency for clustering in the middle of the transcribed region, and that integration was not influenced by the transcriptional orientation. Transcript levels of a set of arbitrarily chosen target genes were significantly higher in two-cell embryos than in embryonic stem cells or adult somatic cells, suggesting that, as previously noted in other settings, lentiviral vectors integrate preferentially into regions of the genome that are transcriptionally active or poised for activation.
Resumo:
BACKGROUND: Sequence data from resistance testing offer unique opportunities to characterize the structure of human immunodeficiency virus (HIV) infection epidemics. METHODS: We analyzed a representative set of HIV type 1 (HIV-1) subtype B pol sequences from 5700 patients enrolled in the Swiss HIV Cohort Study. We pooled these sequences with the same number of sequences from foreign epidemics, inferred a phylogeny, and identified Swiss transmission clusters as clades having a minimal size of 10 and containing >or=80% Swiss sequences. RESULTS: More than one-half of Swiss patients were included within 60 transmission clusters. Most transmission clusters were significantly dominated by specific transmission routes, which were used to identify the following patient groups: men having sex with men (MSM) (38 transmission clusters; average cluster size, 29 patients) or patients acquiring HIV through heterosexual contact (HETs) and injection drug users (IDUs) (12 transmission clusters; average cluster size, 144 patients). Interestingly, there were no transmission clusters dominated by sequences from HETs only. Although 44% of all HETs who were infected between 1983 and 1986 clustered with injection drug users, this percentage decreased to 18% for 2003-2006 (P<.001), indicating a diminishing role of injection drug users in transmission among HETs over time. CONCLUSIONS: Our analysis suggests (1) the absence of a self-sustaining epidemic of HIV-1 subtype B in HETs in Switzerland and (2) a temporally decreasing clustering of HIV infections in HETs and IDUs.
Resumo:
The distribution of living organisms, habitats and ecosystems is primarily driven by abiotic environmental factors that are spatially structured. Assessing the spatial structure of environmental factors, e.g., through spatial autocorrelation analyses (SAC), can thus help us understand their scale of influence on the distribution of organisms, habitats, and ecosystems. Yet SAC analyses of environmental factors are still rarely performed in biogeographic studies. Here, we describe a novel framework that combines SAC and statistical clustering to identify scales of spatial patterning of environmental factors, which can then be interpreted as the scales at which those factors influence the geographic distribution of biological and ecological features. We illustrate this new framework with datasets at different spatial or thematic resolutions. This framework is conceptually and statistically robust, providing a valuable approach to tackle a wide range of issues in ecological and environmental research and particularly when building predictors for ecological models. The new framework can significantly promote fundamental research on all spatially-structured ecological patterns. It can also foster research and application in such fields as global change ecology, conservation planning, and landscape management.
Resumo:
The observation of non-random phylogenetic distribution of traits in communities provides evidence for niche-based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic - and -diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic - and -diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.
Resumo:
Wake-promoting drugs are widely used to treat excessive daytime sleepiness. The neuronal pathways involved in wake promotion are multiple and often not well characterized. We tested d-amphetamine, modafinil, and YKP10A, a novel wake-promoting compound, in three inbred strains of mice. The wake duration induced by YKP10A and d-amphetamine depended similarly on genotype, whereas opposite strain differences were observed after modafinil. Electroencephalogram (EEG) analysis during drug-induced wakefulness revealed a transient approximately 2 Hz slowing of theta oscillations and an increase in beta-2 (20-35 Hz) activity only after YKP10A. Gamma activity (35-60 Hz) was induced by all drugs in a drug- and genotype-dependent manner. Brain transcriptome and clustering analyses indicated that the three drugs have both common and specific molecular signatures. The correlation between specific EEG and gene-expression signatures suggests that the neuronal pathways activated to stay awake vary among drugs and genetic background.
Resumo:
The European genus Ophrys (Orchidaceae) is famous for its insect-like floral morphology, an adaptation for a pseudocopulatory pollination strategy involving Hymenoptera males. A large number of endemic Ophrys species have recently been described, especially within the Mediterranean Basin, which is one of the major species diversity hotspots. Subtle morphological variation and specific pollinator dependence are the two main perceptible criteria for describing numerous endemic taxa. However, the degree to which endemics differ genetically remains a challenging question. Additionally, knowledge regarding the factors underlying the emergence of such endemic entities is limited. To achieve new insights regarding speciation processes in Ophrys, we have investigated species boundaries in the Fly Orchid group (Ophrys insectifera sensu lato) by examining morphological, ecological and genetic evidence. Classically, authors have recognized one widespread taxon (O. insectifera) and two endemics (O. aymoninii from France and O. subinsectifera from Spain). Our research has identified clear morphological and ecological factors segregating among these taxa; however, genetic differences were more ambiguous. Insights from cpDNA sequencing and amplified fragment length polymorphisms genotyping indicated a recent diversification in the three extant Fly Orchid species, which may have been further obscured by active migration and admixture across the European continent. Our genetic results still indicate weak but noticeable phylogeographic clustering that partially correlates with the described species. Particularly, we report several isolated haplotypes and genetic clusters in central and southeastern Europe. With regard to the morphological, ecological and genetic aspects, we discuss the endemism status within the Fly Orchid group from evolutionary, taxonomical and conservation perspectives.