77 resultados para Quartz microstructures
Resumo:
Highly diverse radiolarian faunas of latest Maastrichtian to early Eocene age have been recovered from the low latitude realm in order to contribute to the clarification of radiolarian taxonomy, construct a zonation based on a discrete sequence of co-existence intervals of species ranging from the late Paleocene to early Eocene and to describe a rich low latitude latest Cretaceous to late Paleocene fauna. 225 samples of late Paleocene to early Eocene age have been collected from ODP Leg 171 B-Hole 1051 A (Blake Nose), DSDP Leg 43-Site 384 (Northwest Atlantic) and DSDP Leg 10-Sites 86, 94, 95, 96. Sequences consist of mainly pelagic oozes and chalks, with some clay and ash layers. A new imaging technique is devised to perform (in particular on topotypic material) both transmitted light microscopy and SEM imaging on individual radiolarian specimens. SEM precedes transmitted light imaging. Radiolarians are adhered to a cover slip (using nail varnish) which is secured to a stub using conductive levers. Specimens are then photographed in low vacuum (40-50Pa; 0.5mbar), which enables charge neutralization by ionized molecules of the chamber atmosphere. Thus gold coating is avoided and subsequently this allows transmitted light imaging to follow. The conductive levers are unscrewed and the cover slip is simply overturned and mounted with Canada balsam. In an attempt towards a post-Haeckelian classification, the initial spicule (Entactinaria), micro- or macrosphere (Spumellaria) and initial spicule and cephalis (Nassellaria) have been studied by slicing Entactinaria and Spumellaria, and by tilting Nassellaria in the SEM chamber. A new genus of the family Coccodiscidae is erected and Spongatractus HAECKEL is re-located to the subfamily Axopruinae. The biochronology has been carried out using the Unitary Association Method (Guex 1977, 1991). A database recording the occurrences of 112 species has been used to establish a succession of 22 Unitary Associations. Each association is correlated to chronostratigraphy via calcareous microfossils that were previously studied by other authors. The 22 UAs have been united into seven Unitary Associations Zones (UAZones) (JP10- JE4). The established zones permit to distinguish supplementary subdivisions within the existing zonation. The low-latitude Paleocene radiolarian zonation established by Sanfilippo and Nigrini (1998a) is incomplete due to the lack of radiolarian-bearing early Paleocene sediments. In order to contribute to the study of sparsely known low latitude early Paleocene faunas, 80 samples were taken from the highly siliceous Guayaquil Formation (Ecuador). The sequence consists of black cherts, shales, siliceous limestones and volcanic ash layers. The carbonate content increases up section. Age control is supplied by sporadic occurrences of silicified planktonic foraminifera casts. One Cretaceous zone and seven Paleocene zones have been identified. The existing zonation for the South Pacific can be applied to the early-early late Paleocene sequence, although certain marker species have significantly shorter ranges (notably Buryella foremanae and B. granulata). Despite missing marker species in the late Paleocene, faunal distribution correlates reasonably to the Low-Latitude zonation. An assemblage highly abundant in Lithomelissa, Lophophaena and Cycladophora in the upper RP6 zone (correlated by the presence of Pterocodon poculum, Circodiscus circularis, Pterocodon? sp. aff. P. tenellus and Stylotrochus nitidus) shows a close affinity to contemporaneous faunas reported from Site 1121, Campbell Plateau. Coupled with a high diatom abundance (notably Aulacodiscus spp. and Arachnoidiscus spp.), these faunas are interpreted as reflecting a period of enhanced biosiliceous productivity during the late Paleocene. The youngest sample is void of radiolarians, diatoms and sponge spicules yet contains many pyritized infaunal benthic foraminifera which are akin to the midway-type fauna. The presence of this fauna suggests deposition in a neritic environment. This is in contrast to the inferred bathyal slope depositional environment of the older Paleocene sediments and suggests a shoaling of the depositional environment which may be related to a coeval major accretionary event. RESUME DE LA THESE Des faunes de radiolaires de basses latitudes très diversifiées d'âge Maastrichtien terminal à Eocène inférieur, ont été étudiées afin de contribuer à la clarification de leur taxonomie, de construire une biozonation basée sur une séquence discrète d'intervalles de coexistence des espèces d'age Paléocène supérieur à Eocène inférieur et de décrire une riche faune de basse latitude allant du Crétacé terminal au Paléocène supérieur. L'étude de cette faune contribue particulièrement à la connaissance des insaisissables radiolaires de basses latitudes du Paléocène inférieur. 225 échantillons d'âge Paléocène supérieur à Eocène inférieur provenant des ODP Leg 171B-Site 1051A (Blake Nose), Leg DSDP 43-Site 384 (Atlantique Nord -Ouest) et des DSDP Leg 10 -Sites 86, 94, 95, 96, ont été étudiés. Ces séquences sont constituées principalement de « ooze » et de « chalks »pélagiques ainsi que de quelques niveaux de cendres et d'argiles. Une nouvelle technique d'imagerie a été conçue afin de pouvoir prendre conjointement des images en lumière transmise et au Microscope Electronique à Balayage (MEB) de spécimens individuels. Ceci à été particulièrement appliqué à l'étude des topotypes. L'imagerie MEB précède l'imagerie en lumière transmise. Les radiolaires sont collés sur une lame pour micropaléontologie (au moyen de vernis à ongles) qui est ensuite fixée à un porte-objet à l'aide de bras métalliques conducteurs. Les spécimens sont ensuite photographiés en vide partiel (40-50Pa; 0.5mbar), ce qui permet la neutralisation des charges électrostatiques dues à la présence de molécules ionisées dans l'atmosphère de la chambre d'observation. Ainsi la métallisation de l'échantillon avec de l'or n'est plus nécessaire et ceci permet l'observation ultérieure en lumière transmise. Les bras conducteurs sont ensuite dévissés et la lame est simplement retournée et immergée dans du baume du Canada. Dans une approche de classification post Haeckelienne, le spicule initial (Entactinaires), la micro- ou macro -sphère (Spumellaires) et le spicule initial et cephalis (Nassellaires) ont été étudiés. Ceci a nécessité le sectionnement d'Entactinaires et de Spumellaires, et de pivoter les Nassellaires dans la chambre d'observation du MEB. Un nouveau genre de la Famille des Coccodiscidae a été érigé et Spongatractus HAECKEL à été réassigné à la sous-famille des Axopruninae. L'analyse biostratigraphique à été effectuée à l'aide de la méthode des Associations Unitaires {Guex 1977, 1991). Une base de données enregistrant les présences de 112 espèces à été utilisée poux établir une succession de 22 Associations Unitaires. Chaque association est corrélée à la chronostratigraphie au moyen de microfossiles calcaires précédemment étudiés par d'autres auteurs. Les 22 UAs ont été combinées en sept Zones d'Associations Unitaires (UAZones) (JP10- JE4). Ces Zones permettent d'insérer des subdivisions supplémentaires dans la zonation actuelle. La zonation de basses latitudes du Paléocène établie par Sanfilippo et Nigrini (1998a) est incomplète due au manque de sédiments du Paléocène inférieur contenant des radiolaires. Afin de contribuer à l'étude des faunes peu connues des basses latitudes du Paléocène inférieur, 80 échantillons ont été prélevés d'une section siliceuse de la Formation de Guayaquil (Equateur). La séquence est composée de cherts noirs, de shales, de calcaires siliceux et de couches de cendres volcaniques. La fraction carbonatée augmente vers le haut de la section. Des contraintes chronologiques sont fournies par la présence sporadique de moules de foraminifères planctoniques. Une zone d'intervalles du Crétacé et sept du Paléocène ont été mises en évidence. Bien que certaines espèces marqueur ont des distributions remarquablement plus courtes (notamment Buryella foremanae et B. granulata), la zonation existante pour le Pacifique Sud est applicable à la séquence d'age Paléocène inférieure à Paléocène supérieur basal étudiée. Malgré l'absence d'espèces marqueur du Paléocène supérieur, la succession faunistique se corrèle raisonnablement avec la zonation pour les basses latitudes. Un assemblage contenant d'abondants représentant du genre Lithomelissa, Lophophaena et Cycladophora dans la zone RP6 (correlée par la présence de Pterocodon poculum, Circodiscus circularis, Pterocodon? sp. aff. P. tenellus et Stylotrochus nitidus) montre une grande similitude avec certaines faunes issues des hauts latitudes et d'age semblable décrites par Hollis (2002, Site 1121, Campbell Plateau). Ceci, en plus d'une abondance importante en diatomés (notamment Aulacodiscus spp. et Arachnoidiscus spp.) nous mènent à interpréter cette faune comme témoin d'un épisode de productivité biosiliceuse accrue dans le Paléocène supérieur. L'échantillon le plus jeune, dépourvu de radiolaires, de diatomés et de spicules d'éponge contient de nombreux foraminifères benthiques infaunaux pyritisés. Les espèces identifiées sont caractéristiques d'une faune de type midway. La présence de ces foraminifères suggère un environnement de type néritique. Ceci est en contraste avec l'environnement de pente bathyale caractérisent les sédiments sous-jacent. Cette séquence de diminution de la tranche d'eau peut être associée à un événement d'accrétion majeure. RESUME DE LA THESE (POUR LE GRAND PUBLIC) Les radiolaires constituent le groupe de plancton marin le plus divers et le plus largement répandu de l'enregistrement fossile. Un taux d'évolution rapide et une variation géographique considérable des populations font des radiolaires un outil de recherche sans égal pour la biostratigraphie et la paléocéanographie. Néanmoins, avant de pouvoir les utiliser comme outils de travail, il est essentiel d'établir une solide base taxonomique. L'étude des Radiolaires peut impliquer plusieurs techniques d'extraction, d'observation et d'imagerie qui sont dépendantes du degré d'altération diagénétique des spécimens. Le squelette initial, qu'il s'agisse d'un spicule initial (Entactinaria), d'une micro- ou macro -sphère (Spumellaria) ou d'un spicule initial et d'un cephalis (Nassellaria), est l'élément le plus constant au cours de l'évolution et devrait représenter le fondement de la systématique. Des échantillons provenant de carottes de basses latitudes du Deep Sea Drilling Project et de l' Ocean Drilling ont été étudiés. De nouvelles techniques d'imagerie et de sectionnement ont été développées sur des topotypes de radiolaires préservés en opale, dans le but d'étudier les caractéristiques de leur squelette initial qui n'étaient pas visibles dans leur illustration originale. Ceci aide entre autre à comparer des spécimens recristallisés en quartz, provenant de terrains accrétés, avec les holotypes en opale de la littérature. La distribution des espèces étudiés a fourni des données biostratigraphiques qui ont été compilées à l'aide de la méthode des Associations Unitaires (Guez 1977, 1991). Il s'agit d'un modèle mathématique déterministe conçu pour exploiter la totalité de l'assemblage plutôt que de se confiner à l'utilisation de taxons marqueurs individuels. Une séquence de 22 Associations Unitaires a été établie pour la période allant du Paléocène supérieur à l'Éocène inférieur. Chaque Association Unitaire a été corrélée à l'échelle de temps absolue à l'aide de microfossiles calcaires. Les 22 UAs ont été combinées en sept Zones d'Associations Unitaires (JP10- JE4). Ces Zones permettent d'insérer des subdivisions supplémentaires dans la zonation actuelle. Les radiolaires du Paléocène inférieur à moyen des basses latitudes sont rares. Les meilleures sections connues se trouvent dans les hautes latitudes (Nouvelle Zélande). Quelques assemblages épars ont été mentionnés par le passé en Californie, en Équateur et en Russie. Une séquence siliceuse de 190 mètres dans la Formation de Guayaquil (Équateur), s'étendant du Maastrichtien supérieur au Paléocène supérieur, a fourni des faunes relativement bien préservées. L'étude de ces faunes a permis de mettre en évidence la première séquence complète de radiolaires de basses latitudes dans le Paléocène inférieure. Huit zones allant du Crétacé terminal au Paléocène supérieur ont pu être appliqués et la présence de foraminifères planctoniques a fournie plusieurs points d'attache chronologiques. Dans le Paléocène supérieur, un riche assemblage contenant d'abondants diatomés et radiolaires ayant des similitudes faunistiques marquantes avec des assemblages de hautes latitudes de Nouvelle Zélande, témoigne d'un épisode de productivité biosiliceuse accrue pendant cette période. Étant donné que la pointe du continent sud-américain et l'Antarctique étaient plus proches au cours du Paléocène, ce phénomène peut être expliqué par le transport, le long de la côte ouest de l'Amérique du Sud, d'eaux riches en nutriments en provenance de l'Océan Antarctique. Suite à cet épisode, l'enregistrement en radiolaires est interrompu. Ceci peut être associé à des événements tectoniques régionaux qui ont eu pour effet de diminuer la tranche d'eau relative, rendant l'environnement plus favorable aux foraminifères benthiques qui sont abondamment présents dans l'échantillon le plus jeune de la séquence.
Resumo:
The influence of second phases (e.g., pyroxenes) on olivine grain size was studied by quantitative microfabric analyses of samples of the Hilti massif mantle shear zone (Semail ophiolite, Oman). The microstructures range from porphyroclastic tectonites to ultramylonites, from outside to the center of the shear zone. Starting at conditions of ridge-related flow, they formed under continuous cooling leading to progressive strain localization. The dependence of the average olivine grain size on the second-phase content can be split into a second-phase controlled and a dynamic recrystallization-controlled field. In the former, the olivine grain size is related to the ratio between the second-phase grain size and volume fraction (Zener parameter). In the latter, dynamic recrystallization manifested by a balance between grain growth and grain size reduction processes yields a stable olivine grain size. In both fields the average olivine and second-phase grain size decreases with decreasing temperature. Combining the microstructural information with deformation mechanism maps suggests that the porphyroclastic tectonites (similar to 1100 degrees C) and mylonites (similar to 800 degrees C) formed under the predominance of dislocation creep. Since olivine-rich layers are intercalated with layer parallel, polymineralic bands in the mylonites, nearly equiviscous conditions can be assumed. In the ultramylonites, diffusion creep represents the major deformation mechanism in the polymineralic layers. It is this switch in deformation mechanism from dislocation creep to diffusion creep that forces strain to localize in the fine-grained polymineralic domains at low temperatures (<similar to 700 degrees C), underlining the role of the second phases on strain localization in cooling mantle rocks.
Resumo:
The Puklen complex of the Mid-Proterozoic Gardar Province, South Greenland, consists of various silica-saturated to quartz-bearing syenites, which are intruded by a peralkaline granite. The primary mafic minerals in the syenites are augite +/- olivine + Fe-Ti oxide + amphibole. Ternary feldspar thermometry and phase equilibria among mafic silicates yield T = 950-750degreesC, a(SiO2) = 0.7-1 and an f(O2) of 1-3 log units below the fayalite-magnetite-quartz (FMQ) buffer at 1 kbar. In the granites, the primary mafic minerals are ilmenite and Li-bearing arfvedsonite, which crystallized at temperatures below 750degreesC and at f(O2) values around the FMQ buffer. In both rock types, a secondary post-magmatic assemblage overprints the primary magmatic phases. In syenites, primary Ca-bearing minerals are replaced by Na-rich minerals such as aegirine-augite and albite, resulting in the release of Ca. Accordingly, secondary minerals include ferro-actinolite, (calcite-siderite)(ss), titanite and andradite in equilibrium with the Na-rich minerals. Phase equilibria indicate that formation of these minerals took place over a long temperature interval from near-magmatic temperatures down to similar to300degreesC. In the course of this cooling, oxygen fugacity rose in most samples. For example, late-stage aegirine in granites formed at the expense of arfvedsonite at temperatures below 300degreesC and at an oxygen fugacity above the haematite-magnetite (HM) buffer. The calculated delta(18)O(melt) value for the syenites (+5.9 to +6.3parts per thousand) implies a mantle origin, whereas the inferred delta(18)O(melt) value of <+5.1parts per thousand for the granitic melts is significantly lower. Thus, the granites require an additional low-delta(18)O contaminant, which was not involved in the genesis of the syenites. Rb/Sr data for minerals of both rock types indicate open-system behaviour for Rb and Sr during post-magmatic metasomatism. Neodymium isotope compositions (epsilonNd(1170 Ma) = -3.8 to -6.4) of primary minerals in syenites are highly variable, and suggest that assimilation of crustal rocks occurred to variable extents. Homogeneous epsilon(Nd) values of -5.9 and -6.0 for magmatic amphibole in the granites lie within the range of the syenites. Because of the very similar neodymium isotopic compositions of magmatic and late- to post-magmatic minerals from the same syenite samples a principally closed-system behaviour during cooling is implied. In contrast, for the granites an externally derived fluid phase is required to explain the extremely low epsilon(Nd) values of about -10 and low delta(18)O between +2.0 and +0.5parts per thousand for late-stage aegirine, indicating an open system in the late-stage history. In this study we show that the combination of phase equilibria constraints with stable and radiogenic isotope data on mineral separates can provide much better constraints on magma evolution during emplacement and crystallization than conventional whole-rock studies.
Resumo:
The breccia-hosted epithermal Au-Ag deposit of Rosia Montana is located 7 kin northeast of Abrud, in the northern part of the South Apuseni Mountains, Romania. Estimated total reserves of 214.91 million metric toils (Mt) of ore at 1.46 g/t An and 6.9 g/t Ag (10.1 Moz of An and 47.6 Moz of Ag) make Rosia Montana one of the largest gold deposits in Europe. At this location, Miocene calc-alkaline magmatic and hydrothermal activity was associated with local extensional tectonics within a strike-slip regime related to the indentation of the Adriatic microplate into the European plate during the Carpathian orogenesis. The host rocks of the magmatic complex consist of pre-Mesozoic metamorphosed continental crust covered by Cretaceous turbiditic sediment (flysch). Magmatic activity at Rosia Montana and its surroundings occurred in several pulses and lasted about 7 m.y, Rosia Montana is a breccia-hosted epithermal system related to strong phreatomagmatic activity due to the shallow emplacement of the Montana dacite. The Montana dacite intruded Miocene volcaniclastic material (volcaniclastic breccias) and crops out at Cetate and Carnic Hills. Current mining is focused primarily on the Cetate open pit, which was mapped in detail, leading to the recognition of three distinct breccia bodies: the dacite breccia with a dominantly hydrothermal matrix, the gray polymict breccia with a greater proportion of sand-sized matrix support, and the black polymict breccia, which reached to the surface, contains carbonized tree trunks and has a dominantly barren elastic matrix. The hydrothermal alteration is pervasive. Adularia alteration with a phyllic overprint is ubiquitous; silicification and argillic alteration occur locally. Mineralization consists of quartz, adularia, carbonates (commonly Mn-rich), pyrite, Fe-poor sphalerite, galena, chalcopyrite, tetrahedrite, and native gold and occurs as disseminations, as well as in veins and filling vugs within the Montana dacite and the different breccias. The age of mineralization (12.85 +/- 0.07 Ma) was determined by Ar-40- Ar-39 dating on hydrothermal adularia crystals from vugs in the dacite breccia in the Cetate open pit. Microthermometric measurements of fluid inclusions in quartz phenocrysts from the Montana dacite revealed two fluid types that are absent from the hydrothermal breccia and must have been trapped at depth prior to dacite dome emplacement: brine inclusions (32-55 -wt % NaCl equiv, homogenizing at T-h > 460 degrees C) and intermediate density fluids (4.9-15.6 wt % NaCl equiv, T, between 345 degrees-430 degrees C). Secondary aqueous fluid inclusion assemblages in the phenocrysts have salinities of 0.2 to 2.2 wt percent NaCl equiv and T-h of 200 degrees to 280 degrees C. Fluid inclusion assemblages in hydrothermal quartz from breccias and veins have salinities of 0.2 to 3.4 wt percent NaCl equiv and T-h, from 200 degrees to 270 degrees C. The oxygen isotope composition of several zones of an ore-related epithermal quartz crystal indicate a very constant delta O-18 of 4.5 to 5.0 per mil for the mineralizing fluid, despite significant salinity and temperature variation over time. Following microthermometry, selected fluid inclusion assemblages were analyzed by laser ablation-inductively coupled-plasma mass spectrometry (LA-ICMS). Despite systematic differences in salinity between phenocryst-hosted fluids trapped at depth and fluids from quartz in the epithermal breccias, all fluids have overlapping major and trace cation ratios, including identical Na/K/Rb/Sr/Cs/Ba. Consistent with the constant near-magmatic oxygen isotope composition of the hydrothermal fluids, these data strongly indicate a common magmatic component of these chemically conservative solutes in all fluids. Cu, Pb, Zn, and Mn show variations in concentration relative to the relatively non-reactive alkalis, reflecting the precipitation of sulfide minerals together with An in the epithermal breccia, and possibly of Cu in an inferred subjacent porphyry environment. The magmatic-hydrothermal processes responsible for epithermal Au-Ag mineralization at Rosia Montana are, however, not directly related to the formation of the spatially associated porphyry Cu-Au deposit of Rosia Poieni, which occurred lout 3 m.y. later.
Resumo:
The main geothermal reservoir of Acqui Terme-Visone hosts Na-Cl waters, which are in chemical equilibrium at 120-130 degrees C with typical hydrothermal minerals including quartz, albite, K-feldspar, illite, chlorite (or smectite), anhydrite, calcite and an unspecified Ca-Al-silicate. In the Acqui Terme-Visone area, these geothermal waters ascend along zones of high vertical permeability and discharge at the surface almost undiluted or mixed with cold, shallow waters. To the SW of Acqui Terme, other ascending geothermal waters, either undiluted or mixed with low-salinity waters, enter relatively shallow secondary reservoirs, where they reequilibrate at 65-70 degrees C. Both chemical and isotopic data indicate that bacterial SO4 reduction affects all these waters, especially those discharged by the secondary reservoirs. Therefore, geothermal waters must get in contact with oil, acquiring the relatively oxidized organic substances needed by SO4-reducing bacteria. This oil-water interaction process deserves further investigations, for potential economic implications. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A high resolution mineralogical study (bulk-rock and clay-fraction) was carried out upon the hemipelagic strata of the Angles section (Vocontian Basin, SE France) in which the Valanginian positive C-isotope excursion occurs. To investigate sea-level fluctuations and climate change respectively, a Detrital Index (DI: (phyllosilicates and quartz)/calcite) and a Weathering Index (WI: kaolinite/(illite + chlorite)) were established and compared to second-order sea-level fluctuations. In addition, the mineralogical data were compared with the High Nutrient Index (HNI, based on calcareous nannofossil taxa) data obtained by Duchamp-Alphonse et al. (2007), in order to assess the link between the hydrolysis conditions recorded on the surrounding continents and the trophic conditions inferred for the Vocontian Basin. It appears that the mineralogical distribution along the northwestern Tethyan margin is mainly influenced by sea-level changes during the Early Valanginian (Pertransiens to Stephanophorus ammonite Zones) and by climate variations from the late Early Valanginian to the base of the Hauterivian (top of the Stephanophorus to the Radiatus ammonite Zones). The sea-level fall observed in the Pertransiens ammonite Zone (Early Valanginian) is well expressed by an increase in detrital inputs (an increase in the DI) associated with a more proximal source and a shallower marine environment, whereas the sea-level rise recorded in the Stephanophorus ammonite Zone corresponds to a decrease in detrital influx (a decrease in the DI) as the source becomes more distal and the environment deeper. Interpretation of both DI and WI, indicates that the positive C-isotope excursion (top of the Stephanophorus to the Verrucosum ammonite Zones) is associated with an increase of detrital inputs under a stable, warm and humid climate, probably related to greenhouse conditions, the strongest hydrolysis conditions being reached at the maximum of the positive C-isotope excursion. From the Verrucosum ammonite Zone to the base of the Hauterivian (Radiatus ammonite Zone) climatic conditions evolved from weak hydrolysis conditions and, most likely, a cooler climate (resulting in a decrease in detrital inputs) to a seasonal climate in which more humid seasons alternated with more arid ones. The comparison of the WI to the HNI shows that the nutrification recorded al: the Angles section from the top of the Stephanophorus to the Radiatus ammonite Zones (including the positive C-isotope shift), is associated with climatic changes in the source areas. At that time, increased nutrient inputs were generally triggered by increased weathering processes in the source areas due to acceleration in the hydrological cycle under greenhouse conditions This scenario accords with the widely questioned palaeoenvironmental model proposed by Lini et al., (1992) and suggests that increasing greenhouse conditions are the main factor that drove the palaeoenvironmental changes observed in the hemipelagic realm of the Vocontian Basin, during the Valanginian positive C-isotope shift. This high-resolution mineralogical study highlights short-term climatic changes during the Valanginian, probably associated to rapid changes in the C-cycle. Coeval Massive Parana-Etendeka flood basalt eruptions may explain such rapid perturbations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents field, petrographic-structural and geochemical data on spinet and plagioclase peridotites from the southern domain of the Lanzo ophiolitic peridotite massif (Western Alps). Spinet lherzolites, harzburgites and dunites crop out at Mt. Arpone and Mt. Musine. Field evidence indicates that pristine porphyroclastic spinet lherzolites are transformed to coarse granular spinet harzburgites, which are in turn overprinted by plagioclase peridotites, while strongly depleted spinet harzburgite and dunite bands and bodies replace the plagioclase peridotites. On the northern flank of Mt. Arpone, deformed, porphyroclastic (lithospheric) lherzolites, with diffuse pyroxenite banding, represent the oldest spinel-facies rocks. They show microstructures of a composite subsolidus evolution, suggesting provenance from deeper (asthenospheric) mantle levels and accretion to the lithosphere. These protoliths are locally transformed to coarse granular (reactive) spinet harzburgites and dunites, which show textures reminiscent of melt/rock reaction and geochemical characteristics suggesting that they are products of peridotite interaction with reactively percolating melts. Geochemical data and modelling suggest that <1-5% fractional melting of spinel-facies DMM produced the injected melts. Plagioclase peridotites are hybrid rocks resulting from pre-existing spinet peridotites and variable enrichment of plagioclase and micro-gabbroic material by percolating melts. The impregnating melts attained silica-saturation, as testified by widespread orthopyroxene replacement of olivine, during open system migration in the lithosphere. At Mt. Musine, coarse granular spinet harzburgite and dunite bodies replace the plagioclase peridotites. Most of these replacive, refractory peridotites have interstitial magmatic clinopyroxene with trace element compositions in equilibrium with MORB, while some Cpx have REE-depleted patterns suggesting transient geochemical features of the migrating MORB-type melts, acquired by interaction with the ambient plagioclase peridotite. These replacive spinet harzburgite and dunite bodies are interpreted as channels exploited for focused and reactive migration of silica-undersaturated melts with aggregate MORB compositions. Such melts were unrelated to the silica-saturated melts that refertilized the pre-existing plagioclase peridotites. Finally, MORB melt migration occurred along open fractures, now recorded as gabbroic dikes. Our data document the complexity of rock-types and mantle processes in the South Lanzo peridotite massif and describe a composite tectonic and magmatic scenario that is not consistent with the ``asthenospheric scenario'' proposed by previous authors. We envisage a ``transitional scenario'' in which extending subcontinental lithospheric mantle was strongly modified (both depleted and refertilized) by early melts with MORB-affinity formed by decompression partial melting of the upwelling asthenosphere, during pre-oceanic rifting and lithospheric thinning in the Ligurian Tethys realm. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucara carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores hearing Fe-rich sphalerite (up to 24 mol % Fes). The second mineralization stage is partly superimposed on the first and consists of zoned east-west-trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration assemblages, including aluminum phosphate Sulfate (APS) minerals. The zoned enargite-pyrite veins display mineral zoning, from a core of enargite-pyrite +/- alunite with traces of Au, through an intermediate zone of tennantite, chalcopyrite, and Bi minerals to a poorly developed Outer zone hearing sphalerite-galena +/- kaolinite. The carbonate-hosted replacement ores are controlled along N 35 degrees E, N 90 degrees E, N 120 degrees E, and N 170 degrees E faults. They form well-zoned upward-flaring pipelike orebodies with a core of famatinite-pyrite and alunite, an intermediate zone with tetrahedrite-pyrite, chalcopyrite, matildite, cuprobismutite, emplectite, and other Bi minerals accompanied by APS minerals, kaolinite, and dickite, and an outer zone composed of Fe-poor sphalerite (in the range of 0.05-3.5 mol % Fes) and galena. The outermost zone consists of hematite, magnetite, and Fe-Mn-Zn-Ca-Mg carbonates. Most of the second-stage carbonate-replacement orebodies plunge between 25 degrees and 60 degrees to the west, suggesting that the hydrothermal fluids ascended from deeper levels and that no lateral feeding from the veins to the carbonate-replacement orebodies took place. In the Venencocha and Santa Rosa areas, located 2.5 km northwest of the Cerro de Pasco open pit and in the southern part of the deposit, respectively, advanced argillic altered dacitic domes and oxidized veins with advanced argillic alteration halos occur. The latter veins are possibly the oxidized equivalent of the second-stage enargite-pyrite veins located in the western part of the deposit. The alteration assemblage quartz-muscovite-pyrite associated with the pyrite-quartz body suggests that the first stage precipitated at slightly, acidic fin. The sulfide mineral assemblages define an evolutionary path close to the pyrite-pyrrhotite boundary and are characteristic of low-sulfidation states; they suggest that the oxidizing slightly acidic hydrothermal fluid was buffered by phyllite, shale, and carbonate host rock. However, the presence in the pyrite-quartz body of hematite within quartz suggests that, locally, the fluids were less buffered by the host rock. The mineral assemblages of the second mineralization stage are characteristic of high- to intermediate-sulfidation states. High-sulfidation states and oxidizing conditions were achieved and maintained in the cores of the second-stage orebodies, even in those replacing carbonate rocks. The observation that, in places, second-stage mineral assemblages are found in the inner and outer zones is explained in terms of the hydrothermal fluid advancing and waning. Microthermometric data from fluid inclusions in quartz indicate that the different ores of the first mineralization stage formed at similar temperatures and moderate salinities (200 degrees-275 degrees C and 0.2-6.8 wt % NaCl equiv in the pyrite-quartz body; 192 degrees-250 degrees C and 1.1-4.3 wt % NaCl equiv in the pyrrhotite bodies; and 183 degrees-212 degrees C and 3.2-4.0 wt % NaCl equiv in the Zn-Pb ores). These values are similar to those obtained for fluid inclusions in quartz and sphalerite from the second-stage ores (187 degrees-293 degrees C and 0.2-5.2 wt % NaCl equiv in the enargite-pyrite veins: 178 degrees-265 degrees C and 0.2-7.5 wt % NaCl equiv in quartz of carbonate-replacement orebodies; 168 degrees-999 degrees C and 3-11.8 wt % NaCl equiv in sphalerite of carbonate-replacement orebodies; and 245 degrees-261 degrees C and 3.2-7.7 wt % NaCl equiv in quartz from Venencocha). Oxygen and hydrogen isotope compositions oil kaolinite from carbonate-replacement orebodies (delta(18)O = 5.3-11.5%o, delta D = -82 to -114%o) and on alunite from the Venencocha and Santa Rosa areas (delta(18)O = 1.9-6.9%o, delta D = -56 to -73%o). Oxygen isotope compositions of quartz from the first and second stages have 6180 values from 9.1 to 1.7.8 per mil. Calculated fluids in equilibrium with kaolinite have delta(18)O values of 2.0 to 8.2 and delta D values of -69 to -97 per mil; values in equilibrium with alunite are -1.4 to -6.4 and -62 to -79 per mil. Sulfur isotope compositions of sulfides from both stages have a narrow range of delta(34)S values, between -3.7 and +4.2 per mil; values for sulfates from the second stage are between 4.2 and 31.2 per mil. These results define two mixing trends for the ore-forming fluids. The first trend reflects mixing between a moderately saline (similar to 10 wt % NaCl equiv) magmatic end member that had degassed (as indicated by the low delta D values) and meteoric water. The second mixing indicates condensation of magmatic vapor with HCl and SO(2) into meteoric water, which formed alunite. The hydrothermal system at Cerro de Pasco was emplaced at a shallow depth (similar to 500 m) in the epithermal and upper part of a porphyry environment. The similar temperatures and salinities obtained for the first stage and second stages, together with the stable isotope data, indicate that both stages are linked and represent successive stages of epithermal polymetallic mineralization in the upper part of a porphyry system.
Resumo:
Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, ther¬mal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are con¬trolled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evi¬dence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. This work shows however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt (SJDD) bimodal intrusion, France. This intrusion emplaced ca. 347 Ma ago (IDTIMS U/Pb on zircon) in the Precambrian crust of the Armori- can massif and preserves remarkable sill-like emplacement processes of bimodal mafic-felsic magmas. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built ioppolith. Early m-thick mafic sills (eastern part) form the roof of the intrusion and are homogeneous and fine-grained with planar contacts with neighboring felsic sills; within a minimal 0.8 Ma time span, the system gets warmer (western part). Sills are emplaced by under-accretion under the old east¬ern part, interact and mingle. A striking feature of this younger, warmer part is in-situ differentiation of the mafic sills in the top 40 cm of the layer, which suggests liquids survival in the shallow crust. Rheological and thermal models were performed in order to determine the parameters required to allow this observed in- situ differentiation-accumulation processes. Strong constraints such as total emplacement durations (ca. 0.8 Ma, TIMS date) and pluton thickness (1.5 Km, gravity model) allow a quantitative estimation of the various parameters required (injection rates, incubation time,...). The results show that in-situ differentiation may be achieved in less than 10 years at such shallow depth, provided that: (1) The differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens (eastern part formation in the SJDD intrusion). The latter are emplaced in a very short time (800 years) at high injection rate (0.5 m/y) in order to create a "hot zone" in the shallow crust (incubation time). This implies that nearly 1/3 of the pluton (400m) is emplaced by a subsequent and sustained magmatic activity occurring on a short time scale at the very beginning of the system. (2) Once incubation time is achieved, the calculations show that a small hot zone is created at the base of the sill pile, where new injections stay above their solidus T°C and may interact and differentiate. Extraction of differentiated residual liquids might eventually take place and mix with newly injected magma as documented in active syn-emplacement shear-zones within the "warm" part of the pluton. (3) Finally, the model show that in order to maintain a permanent hot zone at shallow level, injection rate must be of 0.03 m/y with injection of 5m thick basaltic sills eveiy 130yr, imply¬ing formation of a 15 km thick pluton. As this thickness is in contradiction with the one calculated for SJDD (1.5 Km) and exceed much the average thickness observed for many shallow level plutons, I infer that there is no permanent hot zone (or magma chambers) at such shallow level. I rather propose formation of small, ephemeral (10-15yr) reservoirs, which represent only small portions of the final size of the pluton. Thermal calculations show that, in the case of SJDD, 5m thick basaltic sills emplaced every 1500 y, allow formation of such ephemeral reservoirs. The latter are formed by several sills, which are in a mushy state and may interact and differentiate during a short time.The mineralogical, chemical and isotopic data presented in this study suggest a signature intermediate be¬tween E-MORB- and arc-like for the SJDD mafic sills and feeder dykes. The mantle source involved produced hydrated magmas and may be astenosphere modified by "arc-type" components, probably related to a sub¬ducting slab. Combined fluid mobile/immobile trace elements and Sr-Nd isotopes suggest that such subduc¬tion components are mainly fluids derived from altered oceanic crust with minor effect from the subducted sediments. Close match between the SJDD compositions and BABB may point to a continental back-arc setting with little crustal contamination. If so, the SjDD intrusion is a major witness of an extensional tectonic regime during the Early-Carboniferous, linked to the subduction of the Rheno-Hercynian Ocean beneath the Variscan terranes. Also of interest is the unusual association of cogenetic (same isotopic compositions) K-feldspar A- type granite and albite-granite. A-type granites may form by magma mixing between the mafic magma and crustal melts. Alternatively, they might derive from the melting of a biotite-bearing quartz-feldspathic crustal protolith triggered by early mafic injections at low crustal levels. Albite-granite may form by plagioclase cu¬mulate remelting issued from A-type magma differentiation.
Resumo:
The spatial resolution visualized with hydrological models and the conceptualized images of subsurface hydrological processes often exceed resolution of the data collected with classical instrumentation at the field scale. In recent years it was possible to increasingly diminish the inherent gap to information from point like field data through the application of hydrogeophysical methods at field-scale. With regards to all common geophysical exploration techniques, electric and electromagnetic methods have arguably to greatest sensitivity to hydrologically relevant parameters. Of particular interest in this context are induced polarisation (IP) measurements, which essentially constrain the capacity of a probed subsurface region to store an electrical charge. In the absence of metallic conductors the IP- response is largely driven by current conduction along the grain surfaces. This offers the perspective to link such measurements to the characteristics of the solid-fluid-interface and thus, at least in unconsolidated sediments, should allow for first-order estimates of the permeability structure.¦While the IP-effect is well explored through laboratory experiments and in part verified through field data for clay-rich environments, the applicability of IP-based characterizations to clay-poor aquifers is not clear. For example, polarization mechanisms like membrane polarization are not applicable in the rather wide pore-systems of clay free sands, and the direct transposition of Schwarz' theory relating polarization of spheres to the relaxation mechanism of polarized cells to complex natural sediments yields ambiguous results.¦In order to improve our understanding of the structural origins of IP-signals in such environments as well as their correlation with pertinent hydrological parameters, various laboratory measurements have been conducted. We consider saturated quartz samples with a grain size spectrum varying from fine sand to fine gravel, that is grain diameters between 0,09 and 5,6 mm, as well as corresponding pertinent mixtures which can be regarded as proxies for widespread alluvial deposits. The pore space characteristics are altered by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples, while keeping any electrochemical variability during the measurements as small as possible. The results do not follow simple assumptions on relationships to single parameters such as grain size. It was found that the complexity of natural occurring media is not yet sufficiently represented when modelling IP. At the same time simple correlation to permeability was found to be strong and consistent. Hence, adaptations with the aim of better representing the geo-structure of natural porous media were applied to the simplified model space used in Schwarz' IP-effect-theory. The resulting semi- empiric relationship was found to more accurately predict the IP-effect and its relation to the parameters grain size and permeability. If combined with recent findings about the effect of pore fluid electrochemistry together with advanced complex resistivity tomography, these results will allow us to picture diverse aspects of the subsurface with relative certainty. Within the framework of single measurement campaigns, hydrologiste can than collect data with information about the geo-structure and geo-chemistry of the subsurface. However, additional research efforts will be necessary to further improve the understanding of the physical origins of IP-effect and minimize the potential for false interpretations.¦-¦Dans l'étude des processus et caractéristiques hydrologiques des subsurfaces, la résolution spatiale donnée par les modèles hydrologiques dépasse souvent la résolution des données du terrain récoltées avec des méthodes classiques d'hydrologie. Récemment il est possible de réduire de plus en plus cet divergence spatiale entre modèles numériques et données du terrain par l'utilisation de méthodes géophysiques, notamment celles géoélectriques. Parmi les méthodes électriques, la polarisation provoquée (PP) permet de représenter la capacité des roches poreuses et des sols à stocker une charge électrique. En l'absence des métaux dans le sous-sol, cet effet est largement influencé par des caractéristiques de surface des matériaux. En conséquence les mesures PP offrent une information des interfaces entre solides et fluides dans les matériaux poreux que nous pouvons lier à la perméabilité également dirigée par ces mêmes paramètres. L'effet de la polarisation provoquée à été étudié dans différentes études de laboratoire, ainsi que sur le terrain. A cause d'une faible capacité de polarisation des matériaux sableux, comparé aux argiles, leur caractérisation par l'effet-PP reste difficile a interpréter d'une manière cohérente pour les environnements hétérogènes.¦Pour améliorer les connaissances sur l'importance de la structure du sous-sol sableux envers l'effet PP et des paramètres hydrologiques, nous avons fait des mesures de laboratoire variées. En détail, nous avons considéré des échantillons sableux de quartz avec des distributions de taille de grain entre sables fins et graviers fins, en diamètre cela fait entre 0,09 et 5,6 mm. Les caractéristiques de l'espace poreux sont changées en modifiant (i) la distribution de taille des grains, (ii) le degré de compaction, et (iii) le niveau d'hétérogénéité dans la distribution de taille de grains. En suite nous étudions comment ces changements influencent l'effet-PP, la perméabilité et la surface spécifique des échantillons. Les paramètres électrochimiques sont gardés à un minimum pendant les mesures. Les résultats ne montrent pas de relation simple entre les paramètres pétro-physiques comme par exemples la taille des grains. La complexité des media naturels n'est pas encore suffisamment représenté par les modèles des processus PP. Néanmoins, la simple corrélation entre effet PP et perméabilité est fort et consistant. En conséquence la théorie de Schwarz sur l'effet-PP a été adapté de manière semi-empirique pour mieux pouvoir estimer la relation entre les résultats de l'effet-PP et les paramètres taille de graines et perméabilité. Nos résultats concernant l'influence de la texture des matériaux et celles de l'effet de l'électrochimie des fluides dans les pores, permettront de visualiser des divers aspects du sous-sol. Avec des telles mesures géo-électriques, les hydrologues peuvent collectionner des données contenant des informations sur la structure et la chimie des fluides des sous-sols. Néanmoins, plus de recherches sur les origines physiques de l'effet-PP sont nécessaires afin de minimiser le risque potentiel d'une mauvaise interprétation des données.
Resumo:
Gold in the quartz-pebble conglomerates of the late Archean Witwatersrand Basin, South Africa, is often intimately associated with carbonaceous matter of organic/biogenic origin which occurs in the form of stratiform carbon seams and paragenetically late bitumen nodules. Both carbon forms are believed to be formed by solidification of migrating hydrocarbons. This paper presents bulk and molecular chemical and stable carbon isotope data for the carbonaceous matter, all of which are used to provide a clue to the source of the hydrocarbons. These data are compared with those from intra-basinal shales and overlying dolostone of the Transvaal Supergroup. The delta C-13 values of the extracts from the Witwatersrand carbonaceous material show small differences (up to 2.4 parts per thousand) compared to the associated insoluble organic matter. This suggests that the auriferous rocks were stained by mobile hydrocarbons produced by thermal and oxidative alteration of indigenous bitumens, a contribution from hydrocarbons derived from intra-basinal Witwatersrand shales cannot be excluded. Individual aliphatic hydrocarbons of the various carbonaceous materials were subjected to compound specific isotope analysis using on-line gas chromatography/combustion/stable isotope ratio mass spectrometry (GC/C/IRMS). The limited variability of the molecular parameters and uniform delta C-13 values of individual n-alkanes (-31.1 +/- 1.7 parts per thousand) and isoprenoids (-30.7 +/- 1.1 parts per thousand) in the Witwatersrand samples exclude the mixing of oils from different sources. Carbonaceous matter in the dolostones shows distinctly different bulk and molecular isotope characteristics and thus cannot have been the source of the hydrocarbons in the Witwatersrand deposits. All the various forms of Witwatersrand carbon appear indigenous to the Witwatersrand Basin, and the differences between them are explained by variable, in general probably short (centimeter- to meter-scale) hydrocarbon migration during diagenesis and subsequent hydrothermal infiltration. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The gold mineralization of the Hutti Mine is hosted by nine parallel, N - S trending, steeply dipping, 2 - 10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D, shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle-ductile D-3 shearing and intense quartz veining. The development of a S-2-S-3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D, shearing is associated with a pervasively developed distal chlorite - sed cite alteration assemblage in the outer parts of the shear zones and the proximal biotite-plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S-3. The average size of the laminated vein systems is 30-50 m along strike as well as down-dip and 2-6 m in width. Mass balance calculations suggest strong metasomatic changes for the proximal biotite-plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite-sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in 6180 values of the whole rock from around 7.5 parts per thousand for the host rocks to 6-7 parts per thousand for the distal chlorite-sericite and the proximal biotite-plagioclase alteration and around 5 parts per thousand for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow. The ductile D-2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold-sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of preexisting anisotropies for fault-valve action and economic gold mineralization. (C) 2003 Elsevier B.V. All rights reserved.