127 resultados para Plant expression vector
Resumo:
PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.
Resumo:
The constitutive Cauliflower Mosaic Virus 35S promoter (CaMV 35S) is widely used as a tool to express recombinant proteins in plants, but with different success. We previously showed that the expression of an F-actin marker, GFP-talin, in Physcomitrella patens using the CaMV 35S promoter failed to homogenously label moss tissues. Here, we show a significant diminution of the GFP fluorescence in dark grown old moss cells and complete lack of labelling in newly differentiated cells. Furthermore, we demonstrate that stable moss lines harbouring a resistance cassette driven by the CaMV 35S are unable to grow in darkness in the presence of the antibiotic. In contrast to the CaMV 35S, the heat inducible promoter, hsp17.3B showed uniform expression pattern in all cells and tissues following a mild heat shock.
Resumo:
Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.
Resumo:
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1-68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1-68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2-4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Resumo:
ABSTRACT Production of the polyketide antimicrobial metabolite 2,4-diacetyl-phloroglucinol (DAPG) is a key factor in the biocontrol activity of Pseudomonas fluorescens CHA0. Strain CHA0 carrying a translational phlA'-'lacZ fusion was used to monitor expression of the phl biosynthetic genes in vitro and in the rhizosphere. Expression of the reporter gene accurately reflected actual production of DAPG in vitro and in planta as determined by direct extraction of the antimicrobial compound. In a gnotobiotic system containing a clay and sand-based artificial soil, reporter gene expression was significantly greater in the rhizospheres of two monocots (maize and wheat) compared with gene expression in the rhizospheres of two dicots (bean and cucumber). We observed this host genotype effect on bacterial gene expression also at the level of cultivars. Significant differences were found among six additional maize cultivars tested under gnotobiotic conditions. There was no difference between transgenic maize expressing the Bacillus thuringiensis insecticidal gene cry1Ab and the near-isogenic parent line. Plant age had a significant impact on gene expression. Using maize as a model, expression of the phlA'-'lacZ reporter gene peaked at 24 h after planting of pregerminated seedlings, and dropped to a fourth of that value within 48 h, remaining at that level throughout 22 days of plant growth. Root infection by Pythium ultimum stimulated bacterial gene expression on both cucumber and maize, and this was independent of differences in rhizosphere colonization on these host plants. To our knowledge, this is the first comprehensive evaluation of how biotic factors that commonly confront bacterial inoculants in agricultural systems (host genotype, host age, and pathogen infection) modulate the expression of key biocontrol genes for disease suppression.
Resumo:
In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.
Resumo:
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Resumo:
The root-colonizing Pseudomonas fluorescens strain CHA0 is a biocontrol agent of soil-borne plant diseases caused by fungal and oomycete pathogens. Remarkably, this plant-beneficial pseudomonad is also endowed with potent insecticidal activity that depends on the production of a large protein toxin termed Fit (for P. fluorescens insecticidal toxin). In our present work, the genomic locus encoding the P. fluorescens insect toxin is subjected to a detailed molecular analysis. The Fit toxin gene fitD is flanked upstream by the fitABC genes and downstream by the fitE gene that encode the ABC transporter, membrane fusion, and outer membrane efflux components of a type I protein secretion system predicted to function in toxin export. The fitF, fitG, and fitH genes located downstream of fitE code for regulatory proteins having domain structures typical of signal transduction histidine kinases, LysR-type transcriptional regulators, and response regulators, respectively. The role of these insect toxin locus-associated control elements is being investigated with mutants defective for the regulatory genes and with GFP-based reporter fusions to putative promoter regions upstream of the transporter genes fitA and fitE, the toxin gene fitD, and the regulatory genes fitF and fitH. Our preliminary findings suggest that the three regulators interact with known global regulators of biocontrol factor expression to control Fit toxin expression and secretion.
Resumo:
Early revascularization of pancreatic islet cells after transplantation is crucial for engraftment, and it has been suggested that vascular endothelial growth factor-A (VEGF-A) plays a significant role in this process. Although VEGF gene therapy can improve angiogenesis, uncontrolled VEGF secretion can lead to vascular tumor formation. Here we have explored the role of temporal VEGF expression, controlled by a tetracycline (TC)-regulated promoter, on revascularization and engraftment of genetically modified beta cells following transplantation. To this end, we modified the CDM3D beta cell line using a lentiviral vector to promote secretion of VEGF-A either in a TC-regulated (TET cells) or a constitutive (PGK cells) manner. VEGF secretion, angiogenesis, cell proliferation, and stimulated insulin secretion were assessed in vitro. VEGF secretion was increased in TET and PGK cells, and VEGF delivery resulted in angiogenesis, whereas addition of TC inhibited these processes. Insulin secretion by the three cell types was similar. We used a syngeneic mouse model of transplantation to assess the effects of this controlled VEGF expression in vivo. Time to normoglycemia, intraperitoneal glucose tolerance test, graft vascular density, and cellular mass were evaluated. Increased expression of VEGF resulted in significantly better revascularization and engraftment after transplantation when compared to control cells. In vivo, there was a significant increase in vascular density in grafted TET and PGK cells versus control cells. Moreover, the time for diabetic mice to return to normoglycemia and the stimulated plasma glucose clearance were also significantly accelerated in mice transplanted with TET and PGK cells when compared to control cells. VEGF was only needed during the first 2-3 weeks after transplantation; when removed, normoglycemia and graft vascularization were maintained. TC-treated mice grafted with TC-treated cells failed to restore normoglycemia. This approach allowed us to switch off VEGF secretion when the desired effects had been achieved. TC-regulated temporal expression of VEGF using a gene therapy approach presents a novel way to improve early revascularization and engraftment after islet cell transplantation.
Resumo:
Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.
Resumo:
Ce travail de thèse a été réalisé au sein de l'Unité de Thérapie Génique et Biologie des Cellules Souches de l'Hôpital Jules- Gonin dans le Service d'Ophtalmologie de l'Université de Lausanne. Ce laboratoire recherche des solutions thérapeutiques pour des maladies dégénératives et incurables de la rétine comme les rétinites pigmentaires (RP). Ayant déjà montré certains résultats dans le domaine, la thérapie génique a été notre outil pour ce travail. Cette méthode se base sur le principe de remplacer un gène déficient par sa copie normale, en transportant celle-ci au coeur même du noyau par un vecteur. Il existe à l'heure actuelle différents vecteurs. Un des plus efficaces est un vecteur viral non-réplicatif : le lentivirus, dérivé de HIV-1. Celui-ci a la capacité d'intégrer le génome de la cellule cible, lui conférant ainsi un nouveau matériel génétique. Notre but a été d'établir le tropisme du lentivirus dans une rétine en dégénérescence. Ce lentivirus est connu pour transduire efficacement les cellules de l'épithélium pigmentaire rétinien dans l'oeil adulte sain, ainsi que celles de la neurorétine, mais ce, uniquement durant le développement. On sait aussi que le vecteur lentiviral présente un tropisme différent selon les enveloppes dont il est muni ; par exemple, le lentivirus avec une enveloppe Mokola est connu pour transduire les cellules gliales du système nerveux central. La rétine qui dégénère montre quant à elle des changements de sa structure qui pourraient influencer la diffusion du vecteur et/ou son tropisme. Le postulat de base a été le suivant : chez l'adulte, la transduction des neurones de la rétine via le lentivirus pourrait être facilitée par l'altération de la membrane limitante externe induite par la dégénérescence (meilleure pénétrance du virus). D'un point de vue technique, nous avons utilisé deux types distincts de modèles murins de dégénérescence rétinienne : des souris Balb/C soumises à une dose toxique de lumière et les souris Rhodopsin knockout, animaux génétiquement modifiés. Comme vecteur viral, nous avons employé deux différents pseudotypes de lentivirus (caractérisés par les enveloppes virales) avec différents promoteurs (séquence d'ADN qui initie la transduction et confère la spécificité d'expression d'un gène). En changeant l'enveloppe et le promoteur, nous avons essayé de trouver la meilleure combinaison pour augmenter l'affinité du vecteur vis-à-vis des photorécepteurs d'abord, puis vis-à-vis d'autres cellules de la rétine. Nos résultats ont montré que la membrane limitante externe est effectivement altérée chez les deux modèles de dégénérescence, mais que cette modification ne favorise pas la transduction des photorécepteurs lorsqu'on utilise un vecteur lentiviral contenant une enveloppe VSVG et un promoteur photorécepteur-spécifique ou ubiquitaire. En effet, une forte réaction gliale a été observée. Par contre, en utilisant le lentivirus avec une enveloppe Mokola et un promoteur ubiquitaire, nous avons constaté une très bonne transduction au niveau des cellules de Millier dans la rétine en dégénérescence, phénomène non observé chez les souris sauvages. Ce travail a donc permis de trouver un vecteur viral efficace pour atteindre et transduire les cellules de Miiller, ceci seulement pendant la dégénérescence de la rétine. Ces cellules, une fois transduites, pourraient être utilisées pour sécréter dans la rétine des agents thérapeutiques tels que des facteurs neurotrophiques pour soutenir la survie des photorécepteurs ou des facteurs anti-angiogéniques pour prévenir la néo-vascularisation lors de diabète ou de dégénérescence maculaire liée à l'âge. - In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the iuter limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG arid the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an altération of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptór-specific promoter activity change during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the tfokola envelope allows a wide dispersion of the ctor into the retina (corresponding to the injection bleb) with preferential targeting of Muller cells, a situation Mc\ does ot occur in the wild- type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
Some root-associated pseudomonads sustain plant growth by suppressing root diseases caused by pathogenic fungi. We investigated to which extent select cereal cultivars influence expression of relevant biocontrol traits (i.e., root colonization efficacy and antifungal activity) in Pseudomonas fluorescens CHA0. In this representative plant-beneficial bacterium, the antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN), pyoluteorin (PLT), and hydrogen cyanide (HCN) are required for biocontrol. To monitor host plant effects on the expression of biosynthetic genes for these compounds on roots, we developed fluorescent dual-color reporters suited for flow cytometric analysis using fluorescence-activated cell sorting (FACS). In the dual-label strains, the constitutively expressed red fluorescent protein mCherry served as a cell tag and marker for root colonization, whereas reporter fusions based on the green fluorescent protein allowed simultaneous recording of antifungal gene expression within the same cell. FACS analysis revealed that expression of DAPG and PRN biosynthetic genes was promoted in a cereal rhizosphere, whereas expression of PLT and HCN biosynthetic genes was markedly less sustained. When analyzing the response of the bacterial reporters on roots of a selection of wheat, spelt, and triticale cultivars, we were able to detect subtle species- and cultivar-dependent differences in colonization and DAPG and HCN gene expression levels. The expression of these biocontrol traits was particularly favored on roots of one spelt cultivar, suggesting that a careful choice of pseudomonad-cereal combinations might be beneficial to biocontrol. Our approach may be useful for selective single-cell level analysis of plant effects in other bacteria-root interactions.
Resumo:
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.
Resumo:
Plants respond to herbivore attack through a complex and variable system of defense, involving different physical barriers, toxic chemicals, and recruitment of natural enemies. To fully understand the relative role of each type of defense, their synergisms, redundancies, or antagonisms between traits, a variety of methods of enquiry, commonly used in plant physiology and ecology, have been employed. By overexpressing or silencing genes of interest, it is possible to understand the specific role of a particular defensive molecule or mode of action. We argue, however, that these types of experiments alone are not enough to holistically understand the physiological as well as ecological role of plant defenses. We thus advocate for the use of a combination of methods, including genetic modification, quantitative genetics, and phylogenetically controlled comparative studies.
Resumo:
The biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors. DARP32-positive neurons projecting to the globus pallidus were strongly GFP positive with both vectors, whereas those projecting to the substantia nigra pars reticulata (SNpr) were efficiently labeled by the CMV vector but poorly by the TetON vector. Numerous GFP-positive cells were evidenced in the subventricular zone with both vectors. However, in the olfactory bulb (OB), GFP-positive neurons were observed with the CMV vector but not the TetON vector. We conclude that the absence of significant amounts of transgene product in distant regions (SN and OB) constitutes a safety advantage of the AAV2/1-TetON vector for striatal gene therapy. Midbrain injections resulted in selective GFP expression in tyrosine hydroxylase-positive neurons by the TetON vector whereas with the CMV vector, GFP-positive cells covered a widespread area of the midbrain. The biodistribution of GFP protein corresponded to that of the transcripts and not of the viral genomes. We conclude that the rAAV2/1-TetON vector constitutes an interesting tool for specific transgene expression in midbrain dopaminergic neurons.