251 resultados para Peripheral Regions
Resumo:
Background: Recently, more clinical trials are being conducted in Africa and Asia, therefore, background morbidity in the respective populations is of interest. Between 2000 and 2007, the International AIDS Vaccine Initiative sponsored 19 Phase 1 or 2A preventive HIV vaccine trials in the US, Europe, Sub-Saharan Africa and India, enrolling 900 healthy HIV-1 uninfected volunteers. Objective To assess background morbidity as reflected by unsolicited adverse events (AEs), unrelated to study vaccine, reported in clinical trials from four continents. Methods All but three clinical trials were double-blind, randomized, and placebo-controlled. Study procedures and data collection methods were standardized. The frequency and severity of AEs reported during the first year of the trials were analyzed. To avoid confounding by vaccine-related events, solicited reactogenicity and other AEs occurring within 28 d after any vaccination were excluded. Results In total, 2134 AEs were reported by 76% of all participants; 73% of all events were mild. The rate of AEs did not differ between placebo and vaccine recipients. Overall, the percentage of participants with any AE was higher in Africa (83%) compared with Europe (71%), US (74%) and India (65%), while the percentage of participants with AEs of moderate or greater severity was similar in all regions except India. In all regions, the most frequently reported AEs were infectious diseases, followed by gastrointestinal disorders. Conclusions Despite some regional differences, in these healthy participants selected for low risk of HIV infection, background morbidity posed no obstacle to clinical trial conduct and interpretation. Data from controlled clinical trials of preventive interventions can offer valuable insights into the health of the eligible population.
Resumo:
OBJECTIVE: To describe prevalence, prenatal diagnosis and outcome for fetuses and infants with congenital hydrocephalus. METHODS: Data were taken from four European registries of congenital malformations (EUROCAT). The registries included are based on multiple sources of information and include information about livebirths, fetal deaths with GA > or = 20 weeks and terminations of pregnancy for fetal anomaly (TOPFA). All cases from the four registries diagnosed with congenital hydrocephalus and born in the period 1996-2003 were included in the study. Cases with hydrocephalus associated with neural tube defects were not included in the study. RESULTS: Eighty-seven cases with congenital hydrocephalus were identified during the study period giving an overall prevalence of 4.65 per 10,000 births. There were 41 livebirths (47%), four fetal deaths (5%) and 42 TOPFA (48%). Nine percent of all cases were from a multiple pregnancy. Additional non-cerebral major malformations were diagnosed in 38 cases (44%) and karyotype anomalies in eight cases (9%). Median GA at TOPFA was 21 weeks. Among livebirths 61% were diagnosed prenatally at a median GA of 31 weeks (range 17-40 weeks) and median GA at birth was 37 weeks. Fourteen liveborn infants (34%) died within the first year of life with the majority of deaths during the first week after birth. CONCLUSION: Congenital hydrocephalus is a severe congenital malformation often associated with other congenital anomalies. CH is often diagnosed prenatally, although sometimes late in pregnancy. A high proportion of affected pregnancies result in termination for severe fetal anomaly and there is a high mortality in livebirths.
Resumo:
Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.
Resumo:
Introduction: Accurate registration of the relative timing between the occurrence of sensory events on a sub-second time scale is crucial for both sensory-motor and cognitive functions (Mauk and Buonomano, 2004; Habib, 2000). Support for this assumption comes notably from evidence that temporal processing impairments are implicated in a range of neurological and psychiatric conditions (e.g. Buhusi & Meck, 2005). For instance, deficits in fast auditory temporal integration have been regularly put forward as resulting in phonologic discrimination impairments at the basis of speech comprehension deficits characterizing e.g. dyslexia (Habib, 2000). At least two aspects of the brain mechanisms of temporal order judgment remain unknown. First, it is unknown when during the course of stimulus processing a temporal ,,stamp‟ is established to guide TOJ perception. Second, the extent of interplay between the cerebral hemispheres in engendering accurate TOJ performance is unresolved Methods: We investigated the spatiotemporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. Results: AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional de-coupling between homotopic PSR areas. Conclusions: These results support a model of temporal order processing wherein behaviorally relevant temporal information - i.e. a temporal 'stamp'- is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.
Resumo:
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
Peripheral T-cell lymphoma (PTCL) is a rare, heterogeneous type of non-Hodgkin lymphoma (NHL) that, in general, is associated with a poor clinical outcome. Therefore, a current major challenge is the discovery of new prognostic tools for this disease. In the present study, a cohort of 122 patients with PTCL was collected from a multicentric T-cell lymphoma consortium (TENOMIC). We analyzed the expression of 80 small nucleolar RNAs (snoRNAs) using high-throughput quantitative PCR. We demonstrate that snoRNA expression analysis may be useful in both the diagnosis of some subtypes of PTCL and the prognostication of both PTCL-not otherwise specified (PTCL-NOS; n = 26) and angio-immunoblastic T-cell lymphoma (AITL; n = 46) patients treated with chemotherapy. Like miRNAs, snoRNAs are globally down-regulated in tumor cells compared with their normal counterparts. In the present study, the snoRNA signature was robust enough to differentiate anaplastic large cell lymphoma (n = 32) from other PTCLs. For PTCL-NOS and AITL, we obtained 2 distinct prognostic signatures with a reduced set of 3 genes. Of particular interest was the prognostic value of HBII-239 snoRNA, which was significantly over-expressed in cases of AITL and PTCL-NOS that had favorable outcomes. Our results suggest that snoRNA expression profiles may have a diagnostic and prognostic significance for PTCL, offering new tools for patient care and follow-up.
Resumo:
Oxytocin (OT) and vasopressin (VP) are two closely related neuropeptides, widely known for their peripheral hormonal effects. Specific receptors have also been found in the brain, where their neuromodulatory actions have meanwhile been described in a large number of regions. Recently, it has become possible to study their endogenous neuropeptide release with the help of OT/VP promoter-driven expression of fluorescent proteins and light-activated ion channels. In this review, I summarize the neuromodulatory effects of OT and VP in different brain regions by grouping these into different behavioral systems, highlighting their concerted, and at times opposite, effects on different aspects of behavior.
Oesophageal atresia: prevalence, prenatal diagnosis and associated anomalies in 23 European regions.
Resumo:
OBJECTIVE: To describe prevalence, prenatal diagnosis and epidemiological data on oesophageal atresia from 23 well-defined European regions and compare the prevalence between these regions. DESIGN: Population-based study using data from a large European database for surveillance of congenital anomalies (EUROCAT) for two decades (1987-2006). SETTINGS: Twenty-three participating registries based on multiple sources of information including information about live births, fetal deaths with gestational age ≥20 weeks and terminations of pregnancy. PATIENTS: 1222 cases of oesophageal atresia in a population of 5 019 804 births. RESULTS: The overall prevalence was 2.43 cases per 10 000 births (95% CI 2.30 to 2.57). There were regional differences in prevalence ranging from 1.27 to 4.55. Prenatal detection rates varied by registry from >50% of cases to <10% of cases. A total of 546 cases (44.7%) had an isolated oesophageal anomaly, 386 (31.6%) were multiple malformed and 290 (23.7%) had an association or a syndrome. There were 1084 live born cases (88.7%), 43 cases were fetal deaths and 95 cases were terminations of pregnancy. One-week survival for live births was 86.9% and 99.2% if the gestational age was ≥38 weeks and isolated oesophageal atresia was present. Males accounted for 57.3% of all cases and 38.5% of live born cases were born with gestational age <37 weeks. CONCLUSION: There were regional differences in prevalence of oesophageal atresia in Europe. Half of all cases had associated anomalies. Prenatal detection rate increased from 26% to 36.5% over the two decades. Survival in infants with isolated oesophageal atresia born at term is high.
Resumo:
In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.
Resumo:
Peripheral T-cell lymphomas (PTCLs) are heterogeneous and uncommon malignancies characterized by a usually aggressive clinical course. The current World Health Organization (WHO) classification delineates many entities grouped according to the clinical presentation as predominantly leukemic, cutaneous, extranodal, or nodal diseases. Yet, few genetic lesions serve as entity-defining markers. Using high-throughput methods, new recurrent genetic and molecular alterations are being discovered that are expected to refine the current classification and serve as diagnostic genetic markers and targets for novel therapies. There is increasing evidence that certain cellular subsets, in particular follicular helper T cells and gamma delta T cells, represent important defining markers and/or determinants of the biology of certain entities; nevertheless, the cellular derivation of many PTCL entities remains poorly characterized and there is evidence of plasticity in terms of cellular derivation (alpha-beta, gamma-delta, natural killer [NK]) especially in several extranodal entities with a cytotoxic profile. While most clonal NK/T-cell proliferations are in general highly malignant, some more indolent forms of NK or T-cell lympho-proliferations are being identified.