73 resultados para Pathological Conditions, Signs and Symptoms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Necrotizing fasciitis is a rare, rapidly spreading, deep-seated infection causing thrombosis of the blood vessels located in the fascia. Necrotizing fasciitis is a surgical emergency. The diagnosis typically relies on clinical findings of severe sepsis and intense pain, although subacute forms may be difficult to recognize. Imaging studies can help to differentiate necrotizing fasciitis from infections located more superficially (dermohypodermitis). The presence of gas within the necrotized fasciae is characteristic but may be lacking. The main finding is thickening of the deep fasciae due to fluid accumulation and reactive hyperemia, which can be visualized using computed tomography and, above all, magnetic resonance imaging (high signal on contrast-enhanced T1 images and T2 images, best seen with fat saturation). These findings lack specificity, as they can be seen in non-necrotizing fasciitis and even in non-inflammatory conditions. Signs that support a diagnosis of necrotizing fasciitis include extensive involvement of the deep intermuscular fascias (high sensitivity but low specificity), thickening to more than 3mm, and partial or complete absence on post-gadolinium images of signal enhancement of the thickened fasciae (fairly high sensitivity and specificity). Ultrasonography is not recommended in adults, as the infiltration of the hypodermis blocks ultrasound transmission. Thus, imaging studies in patients with necrotizing fasciitis may be challenging to interpret. Although imaging may help to confirm deep tissue involvement and to evaluate lesion spread, it should never delay emergency surgical treatment in patients with established necrotizing fasciitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives To prospectively assess respiratory health in wastewater workers and garbage collectors over 5 years. Methods Exposure, respiratory symptoms and conditions, spirometry and lung-specific proteins were assessed yearly in a cohort of 304 controls, 247 wastewater workers and 52 garbage collectors. Results were analysed with random coefficient models and linear regression taking into account several potential confounders. Results Symptoms, spirometry and lung-specific proteins were not affected by occupational exposure. Conclusions In this population no effects of occupational exposure to bioaerosols were found, probably because of good working conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose has been considered the major, if not the exclusive, energy substrate for the brain. But under certain physiological and pathological conditions other substrates, namely monocarboxylates (lactate, pyruvate and ketone bodies), can contribute significantly to satisfy brain energy demands. These monocarboxylates need to be transported across the blood-brain barrier or out of astrocytes into the extracellular space and taken up into neurons. It has been shown that monocarboxylates are transported by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, MCT2 is the predominant neuronal isoform and little is known about the regulation of its expression. Noradrenaline (NA), insulin and IGF-1 were previously shown to enhance the expression of MCT2 in cultured cortical neurons via a translational mechanism. Here we demonstrate that the well known brain neurotrophic factor BDNF enhances MCT2 protein expression in cultured cortical neurons and in synaptoneurosome preparations in a time- and concentrationdependent manner without affecting MCT2 mRNA levels. We observed that BDNF induced MCT2 expression by activation of MAPK as well as PI3K/Akt/mTOR signaling pathways. Furthermore, we investigated the possible post-transcriptional regulation of MCT2 expression by a neuronal miRNA. Then, we demonstrated that BDNF enhanced MCT2 expression in the hippocampus in vivo, in parallel with some post-synaptic proteins such as PSD95 and AMPA receptor GluR2/3 subunits, and two immediate early genes Arc and Zif268 known to be expressed in conditions related to synaptic plasticity. In the last part, we demonstrated in vivo that a downregulation of hippocampal MCT2 via silencing with an appropriate lentiviral vector in mice caused an impairment of working memory without reference memory deficit. In conclusion, these results suggest that regulation of neuronal monocarboxylate transporter MCT2 expression could be a key event in the context of synaptic plasticity, allowing an adequate energy substrate supply in situations of altered synaptic efficacy. - Le glucose représente le substrat énergétique majeur pour le cerveau. Cependant, dans certaines conditions physiologiques ou pathologiques, le cerveau a la capacité d'utiliser des substrats énergéiques appartenant à la classe des monocarboxylates (lactate, pyruvate et corps cétoniques) afin de satisfaire ses besoins énergétiques. Ces monocarboxylates doivent être transportés à travers la barrière hématoencéphalique mais aussi hors des astrocytes vers l'espace extracellulaire puis re-captés par les neurones. Leur transport est assuré par une famillle de transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, les neurones expriment principalement l'isoforme MCT2 mais peu d'informations sont disponibles concernant la régulation de son expression. Il a été montré que la noradrénaline, l'insuline et l'IGF-1 induisent l'expression de MCT2 dans des cultures de neurones corticaux par un mécanisme traductionnel. Dans cette étude nous démontrons dans un premier temps que le facteur neurotrophique BDNF augmente l'expression de MCT2 à la fois dans des cultures de neurones corticaux et dans les préparations synaptoneurosomales selon un décours temporel et une gamme de concentrations propre. Aucun changement n'a été observé concernant les niveaux d'ARNm de MCT2. Nous avons observé que le BDNF induisait l'expression de MCT2 par l'activation simultanée des voies de signalisation MAPK et PI3K/Akt/mTOR. De plus, nous nous sommes intéressés à une potentielle régulation par les micro-ARNs de la synthèse de MCT2. Ensuite, nous avons démontré que le BDNF induit aussi l'expression de MCT2 dans l'hippocampe de la souris en parallèle avec d'autres protéines post-synaptiques telles que PSD95 et GluR2/3 et avec deux « immediate early genes » tels que Arc et Zif268 connus pour être exprimés dans des conditions de plasticité synaptique. Dans un dernier temps, nous avons démontré qu'une diminution d'expression de MCT2 induite par le biais d'un siRNA exprimé via un vecteur lentiviral dans l'hippocampe de souris générait des déficits de mémoire de travail sans affecter la mémoire de référence. En conclusion, ces résultats nous suggèrent que le transporteur aux monocarboxylates neuronal MCT2 serait essentiel pour l'apport énergétique du lactate pour les neurones dans des conditions de haute activité neuronale comme c'est le cas pendant les processus de plasticité synaptique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of increased PA-inhibitor (PAI) activity and of PAI-1 and PAI-2 antigen levels with different pathological conditions was studied in a collective of over 300 patients. PAI-1 and PAI-2 levels were measured by specific radioimmunoassays. A good correlation was observed of PAI activity with PAI-1 antigen (r = 0.718; p less than 0.0001) but not with PAI-2 (r = 0.070; n.s.). Both in the controls and in the patients, PAI activity and PAI-1 antigen showed an extremely large range of values. PAI activity ranged from 0.5 to 68 U/ml and PAI-1 antigen from 6 to 600 ng/ml. Increased PAI activity and PAI-1 antigen was observed in patients with malignant tumors, cardiovascular or thromboembolic disease, in the postoperative phase, with hepatic insufficiency, after trauma and after extracorporeal circulation. The large spectrum of disease states with increased PAI activity and PAI-1 antigen reinforces previous suggestions that PAI-1 is an acute phase reactant. After extracorporeal circulation, PAI activity and PAI-1 concentrations strongly increased within one hour, remained elevated for at least one week and returned to preoperation values within 7 days. PAI-2 values ranged from below detection limit (15 ng/ml), observed in half of the plasmas, to 485 ng/ml in a pregnant woman. High values of PAI-2 were only observed in pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Literature on the disease profile of prisoners that differentiates by age and gender remains sparse. This study aimed to describe the health of correctional inmates in terms of substance abuse problems and mental and somatic health conditions, and compare it by gender and age. METHODS: This study examined cross-sectional data from the Canton of Vaud in Switzerland on the health conditions of detainees who were in prison on January 1, 2011 or entered prison in 2011. Health conditions validated by physician examination were reported using the International Classification of Diseases (ICD) version 10. The analyses were descriptive by groups of prisoners: the entire sample (All), Men, Older adults and Women. RESULTS: A total of 1,664 individuals were included in the analysis. Men comprised 91.5 % of the sample and had a mean age of 33 years. The other 8.5 % were women and had an average age of 39. Older adults (i.e., age 50 and older) represented 7 % of the total sample. Overall, 80 % of inmates were non-Swiss citizens, but the proportion of Swiss prisoners was higher among the older adults (51 %) and women (29 %). Overall, 41 % of inmates self-reported substance abuse problems. Of those, 27 % were being treated by psychiatrists for behavioral disorders related to substance abuse. Chronic infectious diseases were found in 9 % of the prison population. In addition, 27 % of detainees suffered from serious mental health conditions. Gender and age had an influence on the disease profile of this sample: compared to the entire prison population, the older inmates were less likely to misuse illegal drugs and to suffer from communicable infections but exhibited more problems with alcohol and a higher burden of chronic health conditions. Female prisoners were more disposed to mental health problems (including drug abuse) and infectious diseases. In terms of chronic diseases, women suffered from the same conditions as men, but the diseases were more prevalent in women. CONCLUSION: It is important to understand the different disease profiles of prisoners by gender and age, as it helps identify the needs of different groups and tailor age-and gender-specific interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify risk factors, circumstances, and outcomes for individuals with acute ischemic stroke (AIS) chameleons (AIS-C) arriving in the emergency department of a university hospital. METHODS: We retrospectively reviewed all patients with AIS from the prospectively constructed Acute Stroke Registry and Analysis of Lausanne during 8.25 years. AIS-C were defined as a failure to suspect stroke or as incorrect exclusion of stroke diagnosis. They were compared with patients diagnosed correctly at the time of admission. RESULTS: Forty-seven of 2,200 AIS were missed (2.1%). These AIS-C were either very mild or very severe strokes. Multivariate analysis showed a younger age in patients with AIS-C (odds ratio [OR] per year 0.98, p < 0.01), less prestroke statin treatment (OR 0.29, p = 0.04), and lower diastolic admission blood pressure (OR 0.98 p = 0.04). They showed less eye deviation (OR 0.21, p = 0.04) and more cerebellar strokes (OR 3.78, p < 0.01). AIS-C were misdiagnosed as other neurologic (42.6% of cases) or nonneurologic (17.0%) disease, as unexplained decreased level of consciousness (21.3%), and as concomitantly present disease (19.1%). At 12 months, patients with AIS-C had less favorable outcomes (adjusted OR 0.21, p < 0.01) and higher mortality (adjusted OR 4.37, p < 0.01). CONCLUSIONS: AIS are missed in patients with younger age with a lower cerebrovascular risk profile and may be masked by other acute conditions. Patients with chameleons present more often with milder strokes or coma, fewer focal signs and cerebellar strokes, and have higher disability and mortality rates at 12 months. These findings may be used to raise awareness in emergency departments to recognize and treat such patients appropriately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Although sleep is a biomarker for general health and pathological conditions, its changes across age and gender are poorly understood. METHODS: Subjective evaluation of sleep was assessed by questionnaires in 5,064 subjects, and 2,966 were considered without sleep disorders. Objective evaluation was performed by polysomnography in 2,160 subjects, and 1,147 were considered without sleep disorders. Only subjects without sleep disorders were included (aged 40-80 years). RESULTS: Aging was strongly associated with morning preference. Older subjects, especially women, complained less about sleepiness, and pathological sleepiness was significantly lower than in younger subjects. Self-reported sleep quality and daytime functioning improved with aging. Sleep latency increased with age in women, while sleep efficiency decreased with age in both genders. Deep slow-wave sleep decreased with age, but men were more affected. Spectral power densities within slow waves (< 5 Hz) and fast spindles (14-14.75 Hz) decreased, while theta-alpha (5-1 Hz) and beta (16.75-25 Hz) power in non-rapid eye movement sleep increased with aging. In REM sleep, aging was associated with a progressive decrease in delta (1.25-4.5 Hz) and increase in higher frequencies. CONCLUSIONS: Our findings indicate that sleep complaints should not be viewed as part of normal aging but should prompt the identification of underlying causes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Literature on the disease profile of prisoners that differentiates by age and gender remains sparse. This study aimed to describe the health of correctional inmates in terms of substance abuse problems and mental and somatic health conditions, and compare it by gender and age. METHODS: This study examined cross-sectional data from the Canton of Vaud in Switzerland on the health conditions of detainees who were in prison on January 1, 2011 or entered prison in 2011. Health conditions validated by physician examination were reported using the International Classification of Diseases (ICD) version 10. The analyses were descriptive by groups of prisoners: the entire sample (All), Men, Older adults and Women. RESULTS: A total of 1,664 individuals were included in the analysis. Men comprised 91.5 % of the sample and had a mean age of 33 years. The other 8.5 % were women and had an average age of 39. Older adults (i.e., age 50 and older) represented 7 % of the total sample. Overall, 80 % of inmates were non-Swiss citizens, but the proportion of Swiss prisoners was higher among the older adults (51 %) and women (29 %). Overall, 41 % of inmates self-reported substance abuse problems. Of those, 27 % were being treated by psychiatrists for behavioral disorders related to substance abuse. Chronic infectious diseases were found in 9 % of the prison population. In addition, 27 % of detainees suffered from serious mental health conditions. Gender and age had an influence on the disease profile of this sample: compared to the entire prison population, the older inmates were less likely to misuse illegal drugs and to suffer from communicable infections but exhibited more problems with alcohol and a higher burden of chronic health conditions. Female prisoners were more disposed to mental health problems (including drug abuse) and infectious diseases. In terms of chronic diseases, women suffered from the same conditions as men, but the diseases were more prevalent in women. CONCLUSION: It is important to understand the different disease profiles of prisoners by gender and age, as it helps identify the needs of different groups and tailor age-and gender-specific interventions.