176 resultados para PREDOMINANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in a pleural fluid. Since then, this organism has played a determinant role in biomedical science. From a biological point of view, it was largely implicated in the development of passive and active immunization by serotherapy and vaccination, respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is still today a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia is still entailed with a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistance has emerged and increased dramatically over the last 15 years. During this period of time, the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase, but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (i) inter mediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/L) and (ii) high level resistance (MCI > or = 2 mg/L). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains were responsible for numerous therapeutical failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, in conclusion, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (i) a strict utilization of antibiotics, (ii) the practice of microbiological sampling of infected foci before treatment, (iii) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (iv) the adequate vaccination of populations at risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: EMD 521873 (Selectikine or NHS-IL2LT) is a fusion protein consisting of modified human IL-2 which binds specifically to the high-affinity IL-2 receptor, and an antibody specific for both single- and double-stranded DNA, designed to facilitate the enrichment of IL-2 in tumor tissue. METHODS: An extensive analysis of pharmacodynamic (PD) markers associated with target modulation was assessed during a first-in-human phase I dose-escalation trial of Selectikine. RESULTS: Thirty-nine patients with metastatic or locally advanced tumors refractory to standard treatments were treated with increasing doses of Selectikine, and nine further patients received additional cyclophosphamide. PD analysis, assessed during the first two treatment cycles, revealed strong activation of both CD4+ and CD8+ T-cells and only weak NK cell activation. No dose response was observed. As expected, Treg cells responded actively to Selectikine but remained at lower frequency than effector CD4+ T-cells. Interestingly, patient survival correlated positively with both high lymphocyte counts and low levels of activated CD8+ T-cells at baseline, the latter of which was associated with enhanced T-cell responses to the treatment. CONCLUSIONS: The results confirm the selectivity of Selectikine with predominant T-cell and low NK cell activation, supporting follow-up studies assessing the clinical efficacy of Selectikine for cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mouse models of Leishmania major infection have shown that a predominant CD4(+) T helper type 1 cell (Th1) response leads to protection, while T helper type 2 cell (Th2) predominance confers susceptibility. Dendritic cells (DCs) are antigen-presenting cells that orchestrate the T cell response. The immune response to L. major involves direct antigen presentation by migrating DCs or transfer of antigens to resident DCs to prime T cells. In this review, we discuss the timing and consequences of antigen presentation by DC subsets and how this affects Leishmania susceptibility. We propose a model where dermal DCs and Langerhans cells play a role early in infection, followed by inflammatory monocyte-derived DC and lymph node (LN)-resident DCs at later time points of infection to establish the resistant Th1 response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl(-1) of RNA material, without prior PCR amplification and use of labels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) encodes a superantigen (SAg) that promotes stable infection and virus transmission. Upon subcutaneous MMTV injection, infected B cells present SAg to SAg-reactive T cells leading to a strong local immune response in the draining lymph node (LN) that peaks after 6 d. We have used the reverse transcriptase inhibitor 3'-azido-3'-deoxythymidine (AZT) to dissect in more detail the mechanism of SAg-dependent enhancement of MMTV infection in this system. Our data show that no detectable B or T cell response to SAg occurs in AZT pretreated mice. However, if AZT treatment is delayed 1-2 d after MMTV injection, a normal SAg-dependent local immune response is observed on day 6. Quantitation of viral DNA in draining LN of these infected mice indicates that a 4,000-fold increase in the absolute numbers of infected cells occurs between days 2 and 6 despite the presence of AZT. Furthermore MMTV DNA was found preferentially in surface IgG+ B cells of infected mice and was not detectable in SAg-reactive T cells. Collectively our data suggest that MMTV infection occurs preferentially in B cells without SAg involvement and is completed 1-2 d after virus challenge. Subsequent amplification of MMTV infection between days 2 and 6 requires SAg expression and occurs in the absence of any further requirement for reverse transcription. We therefore conclude that clonal expansion of infected B cells via cognate interaction with SAg-reactive T cells is the predominant mechanism for increasing the level of MMTV infection. Since infected B cells display a memory (surface IgG+) phenotype, both clonal expansion and possibly longevity of the virus carrier cells may contribute to stable MMTV infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Various centralised mammography screening programmes have shown to reduce breast cancer mortality at reasonable costs. However, mammography screening is not necessarily cost-effective in every situation. Opportunistic screening, the predominant screening modality in several European countries, may under certain circumstances be a cost-effective alternative. In this study, we compared the cost-effectiveness of both screening modalities in Switzerland. METHODS: Using micro-simulation modelling, we predicted the effects and costs of biennial mammography screening for 50-69 years old women between 1999 and 2020, in the Swiss female population aged 30-70 in 1999. A sensitivity analysis on the test sensitivity of opportunistic screening was performed. RESULTS: Organised mammography screening with an 80% participation rate yielded a breast cancer mortality reduction of 13%. Twenty years after the start of screening, the predicted annual breast cancer mortality was 25% lower than in a situation without screening. The 3% discounted cost-effectiveness ratio of organised mammography screening was euro11,512 per life year gained. Opportunistic screening with a similar participation rate was comparably effective, but at twice the costs: euro22,671-24,707 per life year gained. This was mainly related to the high costs of opportunistic mammography and frequent use of imaging diagnostics in combination with an opportunistic mammogram. CONCLUSION: Although data on the performance of opportunistic screening are limited, both opportunistic and organised mammography screening seem effective in reducing breast cancer mortality in Switzerland. However, for opportunistic screening to become equally cost-effective as organised screening, costs and use of additional diagnostics should be reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinct subset of T helper cells, named follicular T helper cells (T(FH), has been recently described. T(FH) cells are characterized by their homing capacities in the germinal centers of B-cell follicles where they interact with B cells, supporting B-cell survival and antibody responses. T(FH) cells can be identified by the expression of several markers including the chemokine CXCL13, the costimulatory molecules PD1 and inducible costimulator, and the transcription factor BCL6. They appear to be relevant markers for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and have helped to recognize subsets of peripheral T-cell lymphoma, not otherwise specified, with nodal or cutaneous presentation expressing T(FH) antigens that might be related to AITL. In B-cell neoplasms, T(FH) cells are present within the microenvironment of nodular lymphocyte-predominant Hodgkin lymphoma and follicular lymphoma, where they likely support the growth of neoplastic germinal center-derived B cells. Interestingly, the amount of PD1+ cells in the neoplastic follicles might have a favorable impact on the outcome of follicular lymphoma patients. Altogether, the availability of antibodies directed to T(FH)-associated molecules has important diagnostic and prognostic implications in hematopathology. In addition, T(FH) cells could represent interesting targets in T(FH)-derived lymphomas such as AITL, or in some B-cell neoplasms where they act as part of the tumor microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations are associated with failure of prophylaxis with sulfa drugs. This retrospective study sought to better understand the geographical variation in the prevalence of these mutations. METHODS: DHPS polymorphisms in 394 clinical specimens from immunosuppressed patients who received a diagnosis of P. jirovecii pneumonia and who were hospitalized in 3 European cities were examined using polymerase chain reaction (PCR) single-strand conformation polymorphism. Demographic and clinical characteristics were obtained from patients' medical charts. RESULTS: Of the 394 patients, 79 (20%) were infected with a P. jirovecii strain harboring one or both of the previously reported DHPS mutations. The prevalence of DHPS mutations was significantly higher in Lyon than in Switzerland (33.0% vs 7.5%; P < .001). The proportion of patients with no evidence of sulfa exposure who harbored a mutant P. jirovecii DHPS genotype was significantly higher in Lyon than in Switzerland (29.7% vs 3.0%; P < .001). During the study period in Lyon, in contrast to the Swiss hospitals, measures to prevent dissemination of P. jirovecii from patients with P. jirovecii pneumonia were generally not implemented, and most patients received suboptimal prophylaxis, the failure of which was strictly associated with mutated P. jirovecii. Thus, nosocomial interhuman transmission of mutated strains directly or indirectly from other individuals in whom selection of mutants occurred may explain the high proportion of mutations without sulfa exposure in Lyon. CONCLUSIONS: Interhuman transmission of P. jirovecii, rather than selection pressure by sulfa prophylaxis, may play a predominant role in the geographical variation in the prevalence in the P. jirovecii DHPS mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARYAstrocytes represent the largest cell population in the human brain. In addition to a well established role as metabolic support for neuronal activity, in the last years these cells have been found to accomplish other important and, sometimes, unexpected functions. The tight enwrapping of synapses by astrocytic processes and the predominant expression of glutamate uptake carriers in the astrocytic rather than neuronal plasma membranes brought to the definition of a critical involvement of astrocytes in the clearance of glutamate from synaptic junctions. Moreover, several publications showed that astrocytes are able to release chemical transmitters (gliotransmitters) suggesting their active implication in the control of synaptic functions. Among gliotransmitters, the best characterized is glutamate, which has been proposed to be released from astrocytes in a Ca2+ dependent manner via exocytosis of synaptic-like microvesicles.In my thesis I present results leading to substantial advancement of the understanding of the mechanisms by which astrocytes modulate synaptic activity in the hippocampus, notably at excitatory synapses on dentate granule cells. I show that tumor necrosis factor- alpha (TNFa), a molecule that is generally involved in immune system functions, critically controls astrocyte-to-synapse communication (gliotransmission) in the brain. With constitutive levels of TNFa present, activation of purinergic G protein-coupled receptors in astrocytes, called P2Y1 receptors, induces localized intracellular calcium ([Ca2+]j) elevation in astrocytic processes (measured by two-photon microscopy) followed by glutamate release and activation of pre-synaptic NMDA receptors resulting in synaptic potentiation. In preparations lacking TNFa, astrocytes respond with identical [Ca2+]i elevations but fail to induce neuromodulation. I find that TNFa specifically controls the glutamate release step of gliotransmission. Addition of very low (picomolar) TNFa concentrations to preparations lacking the cytokine, promptly reconstitutes both normal exocytosis in cultured astrocytes and gliotransmission in hippocampal slices. These data provide the first demonstration that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca2+]i elevations but also by permissive/homeostatic factors like TNFa.In addition, I find that higher and presumably pathological TNFa concentrations do not act just permissively but instead become direct and potent triggers of glutamate release from astrocytes, leading to a strong enhancement of excitatory synaptic activity. The TNFa action, like the one observed upon P2Y1R activation, is mediated by pre-synaptic NMDA receptors, but in this case the effect is long-lasting, and not reversible. Moreover, I report that a necessary molecular target for this action of TNFa is TNFR1, one of the two specific receptors for the cytokine, as I found that TNFa was unable to induce synaptic potentiation when applied in slices from TNFR1 knock-out (Tnfrlv") mice. I then created a double transgenic mouse model where TNFR1 is knocked out in all cells but can be re-expressed selectively in astrocytes and I report that activation of the receptors in these cells is sufficient to reestablish TNFa-dependent long-lasting potentiation of synaptic activity in the TNFR1 knock-out mice.I therefore discovered that TNFa is a primary molecule displaying both permissive and instructive roles on gliotransmission controlling synaptic functions. These reports might have profound implications for the understanding of both physiological and pathological processes associated to TNFa production, including inflammatory processes in the brain.RÉSUMÉLes astrocytes sont les cellules les plus abondantes du cerveau humain. Outre leur rôle bien établi dans le support métabolique de l'activité neuronale, d'autres fonctions importantes, et parfois inattendues de ces cellules ont été mises en lumière au cours de ces dernières années. Les astrocytes entourent étroitement les synapses de leurs fins processus qui expriment fortement les transporteurs du glutamate et permettent ainsi aux astrocytes de jouer un rôle critique dans l'élimination du glutamate de la fente synaptique. Néanmoins, les astrocytes semblent être capables de jouer un rôle plus intégratif en modulant l'activité synaptique, notamment par la libération de transmetteurs (gliotransmetteurs). Le gliotransmetteur le plus étudié est le glutamate qui est libéré par l'exocytose régulée de petites vésicules ressemblant aux vésicules synaptiques (SLMVs) via un mécanisme dépendant du calcium.Les résultats présentés dans cette thèse permettent une avancée significative dans la compréhension du mode de communication de ces cellules et de leur implication dans la transmission de l'information synaptique dans l'hippocampe, notamment des synapses excitatrices des cellules granulaires du gyrus dentelé. J'ai pu montrer que le « facteur de nécrose tumorale alpha » (TNFa), une cytokine communément associée au système immunitaire, est aussi fondamentale pour la communication entre astrocyte et synapse. Lorsqu'un niveau constitutif très bas de TNFa est présent, l'activation des récepteurs purinergiques P2Y1 (des récepteurs couplés à protéine G) produit une augmentation locale de calcium (mesurée en microscopie bi-photonique) dans l'astrocyte. Cette dernière déclenche ensuite une libération de glutamate par les astrocytes conduisant à l'activation de récepteurs NMDA présynaptiques et à une augmentation de l'activité synaptique. En revanche, dans la souris TNFa knock-out cette modulation de l'activité synaptique par les astrocytes n'est pas bien qu'ils présentent toujours une excitabilité calcique normale. Nous avons démontré que le TNFa contrôle spécifiquement l'exocytose régulée des SLMVs astrocytaires en permettant la fusion synchrone de ces vésicules et la libération de glutamate à destination des récepteurs neuronaux. Ainsi, nous avons, pour la première fois, prouvé que la modulation de l'activité synaptique par l'astrocyte nécessite, pour fonctionner correctement, des facteurs « permissifs » comme le TNFa, agissant sur le mode de sécrétion du glutamate astrocytaire.J'ai pu, en outre, démontrer que le TNFa, à des concentrations plus élevées (celles que l'on peut observer lors de conditions pathologiques) provoque une très forte augmentation de l'activité synaptique, agissant non plus comme simple facteur permissif mais bien comme déclencheur de la gliotransmission. Le TNFa provoque 1'activation des récepteurs NMD A pré-synaptiques (comme dans le cas des P2Y1R) mais son effet est à long terme et irréversible. J'ai découvert que le TNFa active le récepteur TNFR1, un des deux récepteurs spécifiques pour le TNFa. Ainsi, l'application de cette cytokine sur une tranche de cerveau de souris TNFR1 knock-out ne produit aucune modification de l'activité synaptique. Pour vérifier l'implication des astrocytes dans ce processus, j'ai ensuite mis au point un modèle animal doublement transgénique qui exprime le TNFR1 uniquement dans les astrocytes. Ce dernier m'a permis de prouver que l'activation des récepteurs TNFR1 astrocytaires est suffisante pour induire une augmentation de l'activité synaptique de manière durable.Nous avons donc découvert que le TNFa possède un double rôle, à la fois un rôle permissif et actif, dans le contrôle de la gliotransmission et, par conséquent, dans la modulation de l'activité synaptique. Cette découverte peut potentiellement être d'une extrême importance pour la compréhension des mécanismes physiologiques et pathologiques associés à la production du TNFa, en particulier lors de conditions inflammatoires.RÉSUMÉ GRAND PUBLICLes astrocytes représentent la population la plus nombreuse de cellules dans le cerveau humain. On sait, néanmoins, très peu de choses sur leurs fonctions. Pendant très longtemps, les astrocytes ont uniquement été considérés comme la colle du cerveau, un substrat inerte permettant seulement de lier les cellules neuronales entre elles. Il n'y a que depuis peu que l'on a découvert de nouvelles implications de ces cellules dans le fonctionnement cérébral, comme, entre autres, une fonction de support métabolique de l'activité neuronale et un rôle dans la modulation de la neurotransmission. C'est ce dernier aspect qui fait l'objet de mon projet de thèse.Nous avons découvert que l'activité des synapses (régions qui permettent la communication d'un neurone à un autre) qui peut être potentialisée par la libération du glutamate par les astrocytes, ne peut l'être que dans des conditions astrocytaires très particulières. Nous avons, en particulier, identifié une molécule, le facteur de nécrose tumorale alpha (TNFa) qui joue un rôle critique dans cette libération de glutamate astrocytaire.Le TNFa est surtout connu pour son rôle dans le système immunitaire et le fait qu'il est massivement libéré lors de processus inflammatoires. Nous avons découvert qu'en concentration minime, correspondant à sa concentration basale, le TNFa peut néanmoins exercer un rôle indispensable en permettant la communication entre l'astrocyte et le neurone. Ce mode de fonctionnement est assez probablement représentatif d'un processus physiologique qui permet d'intégrer la communication astrocyte/neurone au fonctionnement général du cerveau. Par ailleurs, nous avons également démontré qu'en quantité plus importante, le TNFa change son mode de fonctionnement et agit comme un stimulateur direct de la libération de glutamate par l'astrocyte et induit une activation persistante de l'activité synaptique. Ce mode de fonctionnement est assez probablement représentatif d'un processus pathologique.Nous sommes également arrivés à ces conclusions grâce à la mise en place d'une nouvelle souche de souris doublement transgéniques dans lesquelles seuls les astrocytes (etnon les neurones ou les autres cellules cérébrales) sont capables d'être activés par le TNFa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed the impact on different steps of the insulin-secretory process. METHODOLOGY/PRINCIPAL FINDINGS: We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3-5 min and reaches a plateau after 10-15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic beta-cell by coordinating the execution of different events in the secretory pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signals detected with functional brain imaging techniques are based on the coupling of neuronal activity with energy metabolism. Techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow the visualization of brain areas that are activated by a variety of sensory, motor or cognitive tasks. Despite the technological sophistication of these brain imaging techniques, the precise mechanisms and cell types involved in coupling and in generating metabolic signals are still debated. Recent experimental data on the cellular and molecular mechanisms that underlie the fluorodeoxyglucose (FDG) - based PET imaging point to a critical role of a particular brain cell type, the astrocytes, in coupling neuronal activity to glucose utilization. Indeed, astrocytes possess receptors and re-uptake sites for a variety of neurotransmitters, including glutamate, the predominant excitatory neurotransmitter in the brain, In addition, astrocytic end-feet, which surround capillaries, are enriched in the specific glucose transporter GLUT-1. These features allow astrocytes to "sense" synaptic activity and to couple it with energy metabolism. In vivo and in vitro data support the following functional model: in response to glutamate released by active neurons, glucose is predominantly taken up by astrocytic end-feet; glucose is then metabolized to lactate which provides a preferred energy substrate for neurons. These data support the notion that astrocytes markedly contribute to the FDG-PET signal.