193 resultados para PHOSPHODIESTERASE INHIBITION
Resumo:
The terminal differentiation of neuronal and pancreatic beta-cells requires the specific expression of genes that are targets of an important transcriptional repressor named RE-1 silencing transcription factor (REST). The molecular mechanism by which these REST target genes are expressed only in neuronal and beta-cells and are repressed by REST in other tissues is a central issue in differentiation program of neuronal and beta-cells. Herein, we showed that the transcriptional factor Sp1 was required for expression of most REST target genes both in insulin-secreting cells and neuronal-like cells where REST is absent. Inhibition of REST in a non-beta and a non-neuronal cell model restored the transcriptional activity of Sp1. This activity was also restored by trichostatin A indicating the requirement of histone deacetylases for the REST-mediated silencing of Sp1. Conversely, exogenous introduction of REST blocked Sp1-mediated transcriptional activity. The REST inhibitory effect was mediated through its C-terminal repressor domain, which could interact with Sp1. Taken together, these data show that the inhibition of Sp1 by REST is required for the silencing of its target genes expression in non-neuronal and in non-beta-cells. We conclude that the interplay between REST and Sp1 determines the cell-specific expression of REST target genes.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
The vascular effects of angiotensin converting enzyme inhibitors are mediated by the inhibition of the dual action of angiotensin converting enzyme (ACE): production of angiotensin II and degradation of bradykinin. The deleterious effect of converting enzyme inhibitors (CEI) on neonatal renal function have been ascribed to the elevated activity of the renin-angiotensin system. In order to clarify the role of bradykinin in the CEI-induced renal dysfunction of the newborn, the effect of perindoprilat was investigated in anesthetized newborn rabbits with intact or inhibited bradykinin B2 receptors. Inulin and PAH clearances were used as indices of GFR and renal plasma flow, respectively. Perindoprilat (20 microg/kg i.v.) caused marked systemic and renal vasodilation, reflected by a fall in blood pressure and renal vascular resistance. GFR decreased, while urine flow rate did not change. Prior inhibition of the B2 receptors by Hoe 140 (300 microg/kg s.c.) did not prevent any of the hemodynamic changes caused by perindoprilat, indicating that bradykinin accumulation does not contribute to the CEI-induced neonatal renal effects. A control group receiving only Hoe 140 revealed that BK maintains postglomerular vasodilation via B2 receptors in basal conditions. Thus, the absence of functional B2 receptors in the newborn was not responsible for the failure of Hoe 140 to prevent the perindoprilat-induced changes. Species- and/or age-related differences in the kinin-metabolism could explain these results, suggesting that in the newborn rabbit other kininases than ACE are mainly responsible for the degradation of bradykinin.
Resumo:
Inhibition of PKB (protein kinase B) activity using a highly selective PKB inhibitor resulted in inhibition of cell cycle progression only if cells were in early G1 phase at the time of addition of the inhibitor, as demonstrated by time-lapse cinematography. Addition of the inhibitor during mitosis up to 2 h after mitosis resulted in arrest of the cells in early G1 phase, as deduced from the expression of cyclins D and A and incorporation of thymidine. After 24 h of cell cycle arrest, cells expressed the cleaved caspase-3, a central mediator of apoptosis. These results demonstrate that PKB activity in early G1 phase is required to prevent the induction of apoptosis. Using antibodies, it was demonstrated that active PKB translocates to the nucleus during early G1 phase, while an even distribution of PKB was observed through cytoplasm and nucleus during the end of G1 phase.
Resumo:
The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists (CAs) and blockers of the renin-angiotensin system [angiotensin-converting enzyme (ACE) inhibitors and angiotensin II antagonists (ARBs)] are widely used today to initiate antihypertensive treatment but, when given as monotherapy, do not suffice in most patients to normalise blood pressure (BP). Combining a CA and either an ACE-inhibitor or an ARB considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. Several fixed-dose combinations are available (CA + ACE-inhibitors: amlodipine + benazepril, felodipine + ramipril, verapamil + trandolapril; CA + ARB: amlodipine + valsartan). They are expected not only to improve BP control, but also to facilitate long-term adherence with antihypertensive therapy, thereby providing maximal protection against the cardiovascular and renal damage caused by high BP.
Resumo:
PURPOSE: The antiangiogenic effect of an antisense oligodeoxynucleotide (ODN) targeting insulin receptor substrate (IRS)-1 was evaluated on rat corneal neovascularization. METHODS: Eyes with neovessels were treated with subconjunctival injections of IRS-1 antisense oligonucleotide (ASODN), IRS-1 sense ODN (SODN), or PBS. At 8 and 24 hours after the first subconjunctival injection, the expression of IRS-1, VEGF, and IL-1beta mRNA was evaluated. IRS-1 protein levels were also measured at 8 hours by Western blot analysis (n = 4/group). On day 10, corneal neovascularization was quantified in flatmount corneas of rats treated daily from days 4 to 9. RESULTS: On day 10, new vessels covered 95.5% +/- 4% of the corneal area in PBS-treated eyes, 92% +/- 7% in SODN-treated eyes and 59% +/- 20% in ASODN-treated eyes (P < 0.001). In the ASODN-treated group, the expression and synthesis of IRS-1 were significantly downregulated when compared with the control groups. ASODN did not significantly affect the expression of VEGF but significantly decreased the expression of IL-1beta at 24 hours (P = 0.04). CONCLUSIONS: Subconjunctival injections of IRS-1 antisense ODN significantly inhibit rat corneal neovascularization. This effect may be mediated by a downregulation of IL-1beta. IRS-1 proteins may be interesting targets for the regulation of angiogenesis mediated by insulin, hypoxia, or inflammation.
Resumo:
Fibroblast growth factor 23 (FGF23) is a circulating factor secreted by osteocytes that is essential for phosphate homeostasis. In kidney proximal tubular cells FGF23 inhibits phosphate reabsorption and leads to decreased synthesis and enhanced catabolism of 1,25-dihydroxyvitamin D3 (1,25[OH]2 D3 ). Excess levels of FGF23 cause renal phosphate wasting and suppression of circulating 1,25(OH)2 D3 levels and are associated with several hereditary hypophosphatemic disorders with skeletal abnormalities, including X-linked hypophosphatemic rickets (XLH) and autosomal recessive hypophosphatemic rickets (ARHR). Currently, therapeutic approaches to these diseases are limited to treatment with activated vitamin D analogues and phosphate supplementation, often merely resulting in partial correction of the skeletal aberrations. In this study, we evaluate the use of FGFR inhibitors for the treatment of FGF23-mediated hypophosphatemic disorders using NVP-BGJ398, a novel selective, pan-specific FGFR inhibitor currently in Phase I clinical trials for cancer therapy. In two different hypophosphatemic mouse models, Hyp and Dmp1-null mice, resembling the human diseases XLH and ARHR, we find that pharmacological inhibition of FGFRs efficiently abrogates aberrant FGF23 signaling and normalizes the hypophosphatemic and hypocalcemic conditions of these mice. Correspondingly, long-term FGFR inhibition in Hyp mice leads to enhanced bone growth, increased mineralization, and reorganization of the disturbed growth plate structure. We therefore propose NVP-BGJ398 treatment as a novel approach for the therapy of FGF23-mediated hypophosphatemic diseases.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Resumo:
We studied the effects on blood pressure and heart rate of two different phenylethanolamine N-methyltransferase (PNMT) inhibitors in normotensive, in two-kidney renal hypertensive, and in deoxycorticosterone-salt (DOC-salt) hypertensive rats. One compound (SK&F 64139) blocks the conversion of norepinephrine to epinephrine in both the central and the peripheral nervous system, whereas the other (SK&F 29661) does not cross the blood-brain barrier and therefore is active mostly in the adrenal glands. In the rats given SK&F 29661, practically no acute blood pressure changes were in the adrenal glands. In the rats given SK&F 64139 induced only a minor blood pressure and heart rate response in normotensive and two-kidney renal hypertensive rats. However, in DOC-salt hypertensive rats, it reduced arterial pressure to approximately normal levels and concomitantly slowed pulse rate. There was a close correlation between the magnitude of the blood pressure response observed in all SK&F 64139-treated animals and the control plasma norepinephrine (4 = -0.795, P less than 0.001) and epinephrine (r = -0.789, P less than 0.001) levels. These results suggest an important role for central epinephrine in regulating the peripheral sympathoadrenomedullary and the baroreceptor reflex activity, particularly when the maintenance of the high blood pressure is not renin-dependent.
Resumo:
GLUT2 expression is strongly decreased in glucose-unresponsive pancreatic beta cells of diabetic rodents. This decreased expression is due to circulating factors distinct from insulin or glucose. Here we evaluated the effect of palmitic acid and the synthetic glucocorticoid dexamethasone on GLUT2 expression by in vitro cultured rat pancreatic islets. Palmitic acid induced a 40% decrease in GLUT2 mRNA levels with, however, no consistent effect on protein expression. Dexamethasone, in contrast, had no effect on GLUT2 mRNA, but decreased GLUT2 protein by about 65%. The effect of dexamethasone was more pronounced at high glucose concentrations and was inhibited by the glucocorticoid antagonist RU-486. Biosynthetic labeling experiments revealed that GLUT2 translation rate was only minimally affected by dexamethasone, but that its half-life was decreased by 50%, indicating that glucocorticoids activated a posttranslational degradation mechanism. This degradation mechanism was not affecting all membrane proteins, since the alpha subunit of the Na+/K+-ATPase was unaffected. Glucose-induced insulin secretion was strongly decreased by treatment with palmitic acid and/or dexamethasone. The insulin content was decreased ( approximately 55 percent) in the presence of palmitic acid, but increased ( approximately 180%) in the presence of dexamethasone. We conclude that a combination of elevated fatty acids and glucocorticoids can induce two common features observed in diabetic beta cells, decreased GLUT2 expression, and loss of glucose-induced insulin secretion.
Resumo:
PURPOSE: To compare the renal hemodynamic and tubular effects of celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2) to those of naproxen, a nonselective inhibitor of cyclooxygenases in salt-depleted subjects. METHODS AND SUBJECTS: Forty subjects were randomized into four parallel groups to receive 200 mg celecoxib twice a day, 400 mg celecoxib twice a day, 500 mg naproxen twice a day, or a placebo for 7 days according to a double-blind study design. Blood pressure, renal hemodynamics, and urinary water and electrolyte excretion were measured before and for 3 hours after drug intake on days 1 and 7. RESULTS: Celecoxib had no effect on systemic blood pressure, but short-term transient decreases in renal blood flow and glomerular filtration rate were found with the highest dose of 400 mg on day 1. On the first day, both celecoxib and naproxen decreased urine output (P < .05) and sodium, lithium, and potassium excretion (P < .01). On day 7, similar effects on water and sodium excretion were observed. During repeated administration, a significant sodium retention occurred during the first 3 days. CONCLUSION: In salt-depleted subjects, selective inhibition of COX-2 causes sodium and potassium retention. This suggests that an increased selectivity for COX-2 does not spare the kidney, at least during salt depletion.
Resumo:
The concept of antibody-mediated targeting of antigenic MHC/peptide complexes on tumor cells in order to sensitize them to T-lymphocyte cytotoxicity represents an attractive new immunotherapy strategy. In vitro experiments have shown that an antibody chemically conjugated or fused to monomeric MHC/peptide can be oligomerized on the surface of tumor cells, rendering them susceptible to efficient lysis by MHC-peptide restricted specific T-cell clones. However, this strategy has not yet been tested entirely in vivo in immunocompetent animals. To this aim, we took advantage of OT-1 mice which have a transgenic T-cell receptor specific for the ovalbumin (ova) immunodominant peptide (257-264) expressed in the context of the MHC class I H-2K(b). We prepared and characterized conjugates between the Fab' fragment from a high-affinity monoclonal antibody to carcinoembryonic antigen (CEA) and the H-2K(b) /ova peptide complex. First, we showed in OT-1 mice that the grafting and growth of a syngeneic colon carcinoma line transfected with CEA could be specifically inhibited by systemic injections of the conjugate. Next, using CEA transgenic C57BL/6 mice adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, we demonstrated that systemic injections of the anti-CEA-H-2K(b) /ova conjugate could induce specific growth inhibition and regression of well-established, palpable subcutaneous grafts from the syngeneic CEA-transfected colon carcinoma line. These results, obtained in a well-characterized syngeneic carcinoma model, demonstrate that the antibody-MHC/peptide strategy can function in vivo. Further preclinical experimental studies, using an anti-viral T-cell response, will be performed before this new form of immunotherapy can be considered for clinical use.
Resumo:
This double-blind placebo-controlled study was designed to investigate the acute and sustained hormonal, renal hemodynamic, and tubular effects of concomitant ACE and neutral endopeptidase (NEP) inhibition by omapatrilat, a vasopeptidase inhibitor, in men. Thirty-two normotensive subjects were randomized to receive a placebo, omapatrilat (40 or 80 mg), or the fosinopril/hydrochlorothiazide (FOS/HCTZ; 20 and 12.5 mg, respectively) fixed combination for 1 week. Blood pressure, renal hemodynamics, urinary electrolytes and atrial natriuretic peptide excretion, and several components of the renin-angiotensin system were measured for 6 hours on days 1 and 7 of drug administration. When compared with the placebo and the FOS/HCTZ combination, omapatrilat induced a significant decrease in plasma angiotensin II levels (P<0.001 versus placebo; P<0.05 versus FOS/HCTZ) and an increase in urinary atrial natriuretic peptide excretion (P<0.01). These hormonal effects were associated with a significant fall in blood pressure (P<0.01) and a marked renal vasodilatation, but with no significant changes in glomerular filtration rate. The FOS/HCTZ markedly increased urinary sodium excretion (P<0.001). The acute natriuretic response to FOS/HCTZ was significantly greater than that observed with omapatrilat (P<0.01). Over 1 week, however, the cumulative sodium excretion induced by both doses of omapatrilat (P<0.01 versus placebo) was at least as great as that induced by the dose of FOS/HCTZ (P=NS versus FOS/HCTZ). In conclusion, the results of the present study in normal subjects demonstrate that omapatrilat has favorable renal hemodynamic effects. Omapatrilat combines potent ACE inhibition with a sustained natriuresis, which explains its well-documented potent antihypertensive efficacy.
Resumo:
Background: In intracerebral hemorrhage (ICH), a subtype of stroke, the bloodentry into the brain triggers toxicity resulting in a strong loss of neurons andinflammation. Water content is also increases leading to growing intracranial pressure,which worsens neurological outcome. C-Jun N-terminal kinases (JNKs) areactivated in response to stress stimuli. Specific inhibition of JNK by a TAT-coupledpeptide (XG-102) mediates neuroprotection in several models of ischemic stroke.Recently, we have noted that the JNK pathway is also activated in a mouse modelof ICH, raising the question of the efficacy of XG-102 in this model.Method: ICH was induced in the mouse by intrastriatal injection of bacterialcollagenase (0,1U). Three hours later, animals received an i.v. injection of XG-102(100μg/kg). The neuroscore was assessed using a scale (from 0 to 9) based on 3behavioral tests performed daily. Then, mice were sacrificed at 6h, 24h, 48h and 5dafter ICH and histological studies performed.Results: XG-102 significantly improves neurological outcome at 24h (mean score:1,8±1.4 vs 3,4±1.8, p<0.01). Analysis of the lesion volume revealed a significantdecrease of the lesion area in the treated group at 48h (29±11 mm3 vs 39±5 mm3,p = 0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, asignificant decrease of the brain swelling was observed in treated animals at 48h(14±13% vs 26±9%, p=0.04) and 5d (-0,3±4.5% vs 5,1±3.6%, p=0.01).Conclusions: Inhibition of the JNK pathway by XG-102 appears to lead to asignificant decrease of the cerebral edema in the ICH model providing a furtherbeneficial effect of the XG-102 treatment. This result is of interest becausecurrently, clinical treatment for brain edema is limited. Importantly, the beneficialeffects observed with XG-102 in both stroke models open the possibility to rapidlytreat patients before identifying the stroke subtype by imaging.