364 resultados para PAIN MEASUREMENT
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
BACKGROUND: Chest pain is a common complaint in primary care, with coronary heart disease (CHD) being the most concerning of many potential causes. Systematic reviews on the sensitivity and specificity of symptoms and signs summarize the evidence about which of them are most useful in making a diagnosis. Previous meta-analyses are dominated by studies of patients referred to specialists. Moreover, as the analysis is typically based on study-level data, the statistical analyses in these reviews are limited while meta-analyses based on individual patient data can provide additional information. Our patient-level meta-analysis has three unique aims. First, we strive to determine the diagnostic accuracy of symptoms and signs for myocardial ischemia in primary care. Second, we investigate associations between study- or patient-level characteristics and measures of diagnostic accuracy. Third, we aim to validate existing clinical prediction rules for diagnosing myocardial ischemia in primary care. This article describes the methods of our study and six prospective studies of primary care patients with chest pain. Later articles will describe the main results. METHODS/DESIGN: We will conduct a systematic review and IPD meta-analysis of studies evaluating the diagnostic accuracy of symptoms and signs for diagnosing coronary heart disease in primary care. We will perform bivariate analyses to determine the sensitivity, specificity and likelihood ratios of individual symptoms and signs and multivariate analyses to explore the diagnostic value of an optimal combination of all symptoms and signs based on all data of all studies. We will validate existing clinical prediction rules from each of the included studies by calculating measures of diagnostic accuracy separately by study. DISCUSSION: Our study will face several methodological challenges. First, the number of studies will be limited. Second, the investigators of original studies defined some outcomes and predictors differently. Third, the studies did not collect the same standard clinical data set. Fourth, missing data, varying from partly missing to fully missing, will have to be dealt with.Despite these limitations, we aim to summarize the available evidence regarding the diagnostic accuracy of symptoms and signs for diagnosing CHD in patients presenting with chest pain in primary care. REVIEW REGISTRATION: Centre for Reviews and Dissemination (University of York): CRD42011001170.
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
The purpose of this study was to determine the prognostic accuracy of perfusion computed tomography (CT), performed at the time of emergency room admission, in acute stroke patients. Accuracy was determined by comparison of perfusion CT with delayed magnetic resonance (MR) and by monitoring the evolution of each patient's clinical condition. Twenty-two acute stroke patients underwent perfusion CT covering four contiguous 10mm slices on admission, as well as delayed MR, performed after a median interval of 3 days after emergency room admission. Eight were treated with thrombolytic agents. Infarct size on the admission perfusion CT was compared with that on the delayed diffusion-weighted (DWI)-MR, chosen as the gold standard. Delayed magnetic resonance angiography and perfusion-weighted MR were used to detect recanalization. A potential recuperation ratio, defined as PRR = penumbra size/(penumbra size + infarct size) on the admission perfusion CT, was compared with the evolution in each patient's clinical condition, defined by the National Institutes of Health Stroke Scale (NIHSS). In the 8 cases with arterial recanalization, the size of the cerebral infarct on the delayed DWI-MR was larger than or equal to that of the infarct on the admission perfusion CT, but smaller than or equal to that of the ischemic lesion on the admission perfusion CT; and the observed improvement in the NIHSS correlated with the PRR (correlation coefficient = 0.833). In the 14 cases with persistent arterial occlusion, infarct size on the delayed DWI-MR correlated with ischemic lesion size on the admission perfusion CT (r = 0.958). In all 22 patients, the admission NIHSS correlated with the size of the ischemic area on the admission perfusion CT (r = 0.627). Based on these findings, we conclude that perfusion CT allows the accurate prediction of the final infarct size and the evaluation of clinical prognosis for acute stroke patients at the time of emergency evaluation. It may also provide information about the extent of the penumbra. Perfusion CT could therefore be a valuable tool in the early management of acute stroke patients.
Resumo:
Purpose: To evaluate the sensitivity of the perfusion parameters derived from Intravoxel Incoherent Motion (IVIM) MR imaging to hypercapnia-induced vasodilatation and hyperoxygenation-induced vasoconstriction in the human brain. Materials and Methods: This study was approved by the local ethics committee and informed consent was obtained from all participants. Images were acquired with a standard pulsed-gradient spin-echo sequence (Stejskal-Tanner) in a clinical 3-T system by using 16 b values ranging from 0 to 900 sec/mm(2). Seven healthy volunteers were examined while they inhaled four different gas mixtures known to modify brain perfusion (pure oxygen, ambient air, 5% CO(2) in ambient air, and 8% CO(2) in ambient air). Diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and blood flow-related parameter (fD*) maps were calculated on the basis of the IVIM biexponential model, and the parametric maps were compared among the four different gas mixtures. Paired, one-tailed Student t tests were performed to assess for statistically significant differences. Results: Signal decay curves were biexponential in the brain parenchyma of all volunteers. When compared with inhaled ambient air, the IVIM perfusion parameters D*, f, and fD* increased as the concentration of inhaled CO(2) was increased (for the entire brain, P = .01 for f, D*, and fD* for CO(2) 5%; P = .02 for f, and P = .01 for D* and fD* for CO(2) 8%), and a trend toward a reduction was observed when participants inhaled pure oxygen (although P > .05). D remained globally stable. Conclusion: The IVIM perfusion parameters were reactive to hyperoxygenation-induced vasoconstriction and hypercapnia-induced vasodilatation. Accordingly, IVIM imaging was found to be a valid and promising method to quantify brain perfusion in humans. © RSNA, 2012.
Resumo:
AIM: To discuss the use of new ultrasonic techniques that make it possible to visualize elastic (carotid) and muscular (radial) capacitance arteries non-invasively. RESULTS OF DATA REVIEW: Measurements of carotid wall thickness and the detection of atheromas are related to arterial pressure, to other risk factors and to the risk of subsequent complications. The use of high-frequency ultrasound (7.5-10 MHz), measurements of far wall thicknesses in areas free of atheromas at end-diastole (by ECG gating or pressure waveform recording) and descriptions of the size and characteristics of atherosclerotic plaques allow a non-invasive assessment of vascular hypertrophy and atherosclerosis in hypertensive patients. CONCLUSIONS: Careful attention to methodologic and physiologic factors is needed to provide accurate information about the anatomy of the dynamically pulsating arterial tree.
Resumo:
AIM: To determine the prevalence and characteristics of pain in Thai human immunodeficiency virus-infected children. METHODS: A cross-sectional study was performed at the HIV/AIDS outpatient clinic at the Queen Sirikit National Institute of Child Health, Bangkok, Thailand from November 2002 to January 2003. Sixty-one human immunodeficiency virus-infected patients aged 4 to 15 y, an equal number of age-matched children with no chronic disease and their caregivers participated. We interviewed children and their caregivers using a structured questionnaire on pain. The main outcome measure was the percentage of human immunodeficiency virus-infected children reporting pain. RESULTS: Forty-four percent of the human immunodeficiency virus-infected children reported pain compared to 13% of the children with no chronic disease (odds ratio, OR = 5.3; 95% CI: 2.0-14.3). Seven percent of the infected children experienced chronic pain. Children in human immunodeficiency virus clinical categories B and C reported more pain than children in categories N and A (OR = 4.0, 95% CI: 1.1-14.7). Pain in infected children tended to occur in the abdomen, lower limbs or head. Only 44 percent of the infected children experiencing pain received analgesic medication. CONCLUSION: Despite being a common experience, pain is insufficiently taken into account and treated in Thai children with HIV/AIDS. Therefore, adequate pain identification, assessment and management should be systemically considered in their routine care.
Resumo:
Hypoglycemia, if recurrent, may have severe consequences on cognitive and psychomotor development of neonates. Therefore, screening for hypoglycemia is a daily routine in every facility taking care of newborn infants. Point-of-care-testing (POCT) devices are interesting for neonatal use, as their handling is easy, measurements can be performed at bedside, demanded blood volume is small and results are readily available. However, such whole blood measurements are challenged by a wide variation of hematocrit in neonates and a spectrum of normal glucose concentration at the lower end of the test range. We conducted a prospective trial to check precision and accuracy of the best suitable POCT device for neonatal use from three leading companies in Europe. Of the three devices tested (Precision Xceed, Abbott; Elite XL, Bayer; Aviva Nano, Roche), Aviva Nano exhibited the best precision. None completely fulfilled the ISO-accuracy-criteria 15197: 2003 or 2011. Aviva Nano fulfilled these criteria in 92% of cases while the others were <87%. Precision Xceed reached the 95% limit of the 2003 ISO-criteria for values ≤4.2 mmol/L, but not for the higher range (71%). Although validated for adults, new POCT devices need to be specifically evaluated on newborn infants before adopting their routine use in neonatology.
Resumo:
Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.
Resumo:
RESUME : La douleur neuropathique est le résultat d'une lésion ou d'un dysfonctionnement du système nerveux. Les symptômes qui suivent la douleur neuropathique sont sévères et leur traitement inefficace. Une meilleure approche thérapeutique peut être proposée en se basant sur les mécanismes pathologiques de la douleur neuropathique. Lors d'une lésion périphérique une douleur neuropathique peut se développer et affecter le territoire des nerfs lésés mais aussi les territoires adjacents des nerfs non-lésés. Une hyperexcitabilité des neurones apparaît au niveau des ganglions spinaux (DRG) et de la corne dorsale (DH) de la moelle épinière. Le but de ce travail consiste à mettre en évidence les modifications moléculaires associées aux nocicepteurs lésés et non-lésés au niveau des DRG et des laminae I et II de la corne dorsale, là où l'information nociceptive est intégrée. Pour étudier les changements moléculaires liés à la douleur neuropathique nous utilisons le modèle animal d'épargne du nerf sural (spared nerve injury model, SNI) une semaine après la lésion. Pour la sélection du tissu d'intérêt nous avons employé la technique de la microdissection au laser, afin de sélectionner une sous-population spécifique de cellules (notamment les nocicepteurs lésés ou non-lésés) mais également de prélever le tissu correspondant dans les laminae superficielles. Ce travail est couplé à l'analyse à large spectre du transcriptome par puce ADN (microarray). Par ailleurs, nous avons étudié les courants électriques et les propriétés biophysiques des canaux sodiques (Na,,ls) dans les neurones lésés et non-lésés des DRG. Aussi bien dans le système nerveux périphérique, entre les neurones lésés et non-lésés, qu'au niveau central avec les aires recevant les projections des nocicepteurs lésés ou non-lésés, l'analyse du transcriptome montre des différences de profil d'expression. En effet, nous avons constaté des changements transcriptionnels importants dans les nocicepteurs lésés (1561 gènes, > 1.5x et pairwise comparaison > 77%) ainsi que dans les laminae correspondantes (618 gènes), alors que ces modifications transcriptionelles sont mineures au niveau des nocicepteurs non-lésés (60 gènes), mais important dans leurs laminae de projection (459 gènes). Au niveau des nocicepteurs, en utilisant la classification par groupes fonctionnels (Gene Ontology), nous avons observé que plusieurs processus biologiques sont modifiés. Ainsi des fonctions telles que la traduction des signaux cellulaires, l'organisation du cytosquelette ainsi que les mécanismes de réponse au stress sont affectés. Par contre dans les neurones non-lésés seuls les processus biologiques liés au métabolisme et au développement sont modifiés. Au niveau de la corne dorsale de la moelle, nous avons observé des modifications importantes des processus immuno-inflammatoires dans l'aire affectée par les nerfs lésés et des changements associés à l'organisation et la transmission synaptique au niveau de l'aire des nerfs non-lésés. L'analyse approfondie des canaux sodiques a démontré plusieurs changements d'expression, principalement dans les neurones lésés. Les analyses fonctionnelles n'indiquent aucune différence entre les densités de courant tétrodotoxine-sensible (TTX-S) dans les neurones lésés et non-lésés même si les niveaux d'expression des ARNm des sous-unités TTX-S sont modifiés dans les neurones lésés. L'inactivation basale dépendante du voltage des canaux tétrodotoxine-insensible (TTX-R) est déplacée vers des potentiels positifs dans les cellules lésées et non-lésées. En revanche la vitesse de récupération des courants TTX-S et TTX-R après inactivation est accélérée dans les neurones lésés. Ces changements pourraient être à l'origine de l'altération de l'activité électrique des neurones sensoriels dans le contexte des douleurs neuropathiques. En résumé, ces résultats suggèrent l'existence de mécanismes différenciés affectant les neurones lésés et les neurones adjacents non-lésés lors de la mise en place la douleur neuropathique. De plus, les changements centraux au niveau de la moelle épinière qui surviennent après lésion sont probablement intégrés différemment selon la perception de signaux des neurones périphériques lésés ou non-lésés. En conclusion, ces modulations complexes et distinctes sont probablement des acteurs essentiels impliqués dans la genèse et la persistance des douleurs neuropathiques. ABSTRACT : Neuropathic pain (NP) results from damage or dysfunction of the peripheral or central nervous system. Symptoms associated with NP are severe and difficult to treat. Targeting NP mechanisms and their translation into symptoms may offer a better therapeutic approach.Hyperexcitability of the peripheral and central nervous system occurs in the dorsal root ganglia (DRG) and the dorsal horn (DH) of the spinal cord. We aimed to identify transcriptional variations in injured and in adjacent non-injured nociceptors as well as in corresponding laminae I and II of DH receiving their inputs.We investigated changes one week after the injury induced by the spared nerve injury model of NP. We employed the laser capture microdissection (LCM) for the procurement of specific cell-types (enrichment in nociceptors of injured/non-injured neurons) and laminae in combination with transcriptional analysis by microarray. In addition, we studied functionál properties and currents of sodium channels (Nav1s) in injured and neighboring non-injured DRG neurons.Microarray analysis at the periphery between injured and non-injured DRG neurons and centrally between the area of central projections from injured and non-injured neurons show significant and differential expression patterns. We reported changes in injured nociceptors (1561 genes, > 1.5 fold, >77% pairwise comparison) and in corresponding DH laminae (618 genes), while less modifications occurred in non-injured nociceptors (60 genes) and in corresponding DH laminae (459 genes). At the periphery, we observed by Gene Ontology the involvement of multiple biological processes in injured neurons such as signal transduction, cytoskeleton organization or stress responses. On contrast, functional overrepresentations in non-injured neurons were noted only in metabolic or developmentally related mechanisms. At the level of superficial laminae of the dorsal horn, we reported changes of immune and inflammatory processes in injured-related DH and changes associated with synaptic organization and transmission in DH corresponding to non-injured neurons. Further transcriptional analysis of Nav1s indicated several changes in injured neurons. Functional analyses of Nav1s have established no difference in tetrodotoxin-sensitive (TTX-S) current densities in both injured and non-injured neurons, despite changes in TTX-S Nav1s subunit mRNA levels. The tetrodotoxin-resistant (TTX-R) voltage dependence of steady state inactivation was shifted to more positive potentials in both injured and non-injured neurons, and the rate of recovery from inactivation of TTX-S and TTX-R currents was accelerated in injured neurons. These changes may lead to alterations in neuronal electrogenesis. Taken together, these findings suggest different mechanisms occurring in the injured neurons and the adjacent non-injured ones. Moreover, central changes after injury are probably driven in a different manner if they receive inputs from injured or non-injured neurons. Together, these distinct and complex modulations may contribute to NP.
Resumo:
Zero correlation between measurement error and model error has been assumed in existing panel data models dealing specifically with measurement error. We extend this literature and propose a simple model where one regressor is mismeasured, allowing the measurement error to correlate with model error. Zero correlation between measurement error and model error is a special case in our model where correlated measurement error equals zero. We ask two research questions. First, we wonder if the correlated measurement error can be identified in the context of panel data. Second, we wonder if classical instrumental variables in panel data need to be adjusted when correlation between measurement error and model error cannot be ignored. Under some regularity conditions the answer is yes to both questions. We then propose a two-step estimation corresponding to the two questions. The first step estimates correlated measurement error from a reverse regression; and the second step estimates usual coefficients of interest using adjusted instruments.
Resumo:
Background: Neuropathic pain is associated with altered expression of voltage-gated sodium channels (VGSCs). The ubiquitin ligase Nedd4-2 regulates sodium channels and we have previously demonstrated in expression systems that this protein decreases the Nav1.7 current. Nav1.7 is the most abundant VGSC in dorsal root ganglion (DRG) and is a major contributor to pain perception. We hypothesize that Nedd4-2 modulates Nav1.7 channel density at the neuronal cell membrane and the goal of this present experiment is to characterize Nav1.7 and Nedd4-2 expression in the context of neuropathic pain. Methods: Biotinylation, Western Blot and Immunohistochemistry experiments for Nav1.7 and Nedd4-2 were performed in HEK transfected cells or in rodent DRGs 7 days after SNI surgery. We used antibodies against Nedd4-2 and Nav1.7 and several comarkers of DRG neurons (Peripherin for nociceptors, NF-200 for large myelinated cells, ATF3 for injured neurons). Data are expressed in proportion of positive cells (%) and protein signal ratio } SEM, n = 3-4 in each condition. Results: In HEK293 cells, upon co-expression of Nedd4-2, a decrease of 50% of Nav1.7 signal at the membrane is demonstrated (p ≤0.005). Immunofluorescence on DRGs neurons reveals a decreased number of positive Nedd4-2 cells in the SNI model (27.0 } 1.2%) versus sham group (43.4 } 3.5%) (p <0.005). Nedd4-2 is mainly colocalized with markers of small neurons and almost absent in large neurons. In addition, Nedd4-2 is predominantly decreased in injured ATF3 positive cells. Conclusion: Our results indicate that Nedd4-2 decreases Nav1.7 channels and currents at the cell membrane and that it is mainly expressed in nociceptors and downregulated after nerve injury. Taken together, our data suggest that the reduction of Nedd4-2, after nerve injury, modulates Nav1.7 activity and can contribute to neuropathic pain. We will further try to restore a normal level of Nedd4.2 via a gene therapy approach with viral vectors in order to soothe symptoms of neuropathic pain.