253 resultados para Naive Bayes Classifier
Resumo:
New anti-cancer agents are being developed that specifically recognise tumour cells. Recognition is dependent upon the enhanced expression of antigenic determinants on the surface of tumour cells. The tumour exposure and the extracellular accessibility of the mucin MUC-1 make this marker a suitable target for tumour diagnosis and therapy. We isolated and characterised six human scFv antibody fragments that bound to the MUC-1 core protein, by selecting a large naive human phage display library directly on a MUC-1-expressing breast carcinoma cell line. Their binding characteristics have been studied by ELISA, FACS and indirect immunofluorescence. The human scFv antibody fragments were specific for the tandem repeat region of MUC-1 and their binding is inhibited by soluble antigen. Four human scFv antibody fragments (M2, M3, M8, M12) recognised the hydrophilic PDTRP region of the MUC-1 core protein, which is thought to be an immunodominant region. The human scFv antibody fragments were stable in human serum at 37 degrees C and retained their binding specificity. For imaging or targeting to tumours over-expressing MUC-1, it might be feasible to use these human scFv, or multivalent derivatives, as vehicles to deliver anti-cancer agents.
Resumo:
Allogeneic MHC-incompatible organ or cell grafts are usually promptly rejected by immunocompetent hosts. Here we tested allogeneic beta-islet cell graft acceptance by immune or naive C57BL/6 mice rendered diabetic with streptozotocin (STZ). Fully MHC-mismatched insulin-producing growth-regulated beta-islet cells were transplanted under the kidney capsule or s.c. Although previously or simultaneously primed mice rejected grafts, STZ-treated diabetic mice accepted islet cell grafts, and hyperglycemia was corrected within 2-4 weeks in absence of conventional immunosuppression. Allogeneic grafts that controlled hyperglycemia expressed MHC antigens, were not rejected for >100 days, and resisted a challenge by allogeneic skin grafts or multiple injections of allogeneic cells. Importantly, the skin grafts were rejected in a primary fashion by the grafted and corrected host, indicating neither tolerization nor priming. Such strictly extralymphatic cell grafts that are immunologically largely ignored should be applicable clinically.
Resumo:
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.
Resumo:
Protection against reinfection is mediated by Ag-specific memory CD8 T cells, which display stem cell-like function. Because canonical Wnt (Wingless/Int1) signals critically regulate renewal versus differentiation of adult stem cells, we evaluated Wnt signal transduction in CD8 T cells during an immune response to acute infection with lymphocytic choriomeningitis virus. Whereas naive CD8 T cells efficiently transduced Wnt signals, at the peak of the primary response to infection only a fraction of effector T cells retained signal transduction and the majority displayed strongly reduced Wnt activity. Reduced Wnt signaling was in part due to the downregulation of Tcf-1, one of the nuclear effectors of the pathway, and coincided with progress toward terminal differentiation. However, the correlation between low and high Wnt levels with short-lived and memory precursor effector cells, respectively, was incomplete. Adoptive transfer studies showed that low and high Wnt signaling did not influence cell survival but that Wnt high effectors yielded memory cells with enhanced proliferative potential and stronger protective capacity. Likewise, following adoptive transfer and rechallenge, memory cells with high Wnt levels displayed increased recall expansion, compared with memory cells with low Wnt signaling, which were preferentially effector-like memory cells, including tissue-resident memory cells. Thus, canonical Wnt signaling identifies CD8 T cells with enhanced proliferative potential in part independent of commonly used cell surface markers to discriminate effector and memory T cell subpopulations. Interventions that maintain Wnt signaling may thus improve the formation of functional CD8 T cell memory during vaccination.
Resumo:
The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.
Resumo:
OBJECTIVES: Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS: The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS: A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS: The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.
Resumo:
BACKGROUND: A growing number of case reports have described tenofovir (TDF)-related proximal renal tubulopathy and impaired calculated glomerular filtration rates (cGFR). We assessed TDF-associated changes in cGFR in a large observational HIV cohort. METHODS: We compared treatment-naive patients or patients with treatment interruptions > or = 12 months starting either a TDF-based combination antiretroviral therapy (cART) (n = 363) or a TDF-sparing regime (n = 715). The predefined primary endpoint was the time to a 10 ml/min reduction in cGFR, based on the Cockcroft-Gault equation, confirmed by a follow-up measurement at least 1 month later. In sensitivity analyses, secondary endpoints including calculations based on the modified diet in renal disease (MDRD) formula were considered. Endpoints were modelled using pre-specified covariates in a multiple Cox proportional hazards model. RESULTS: Two-year event-free probabilities were 0.65 (95% confidence interval [CI] 0.58-0.72) and 0.80 (95% CI 0.76-0.83) for patients starting TDF-containing or TDF-sparing cART, respectively. In the multiple Cox model, diabetes mellitus (hazard ratio [HR] = 2.34 [95% CI 1.24-4.42]), higher baseline cGFR (HR = 1.03 [95% CI 1.02-1.04] by 10 ml/min), TDF use (HR = 1.84 [95% CI 1.35-2.51]) and boosted protease inhibitor use (HR = 1.71 [95% CI 1.30-2.24]) significantly increased the risk for reaching the primary endpoint. Sensitivity analyses showed high consistency. CONCLUSION: There is consistent evidence for a significant reduction in cGFR associated with TDF use in HIV-infected patients. Our findings call for a strict monitoring of renal function in long-term TDF users with tests that distinguish between glomerular dysfunction and proximal renal tubulopathy, a known adverse effect of TDF.
Resumo:
The paper follows on from earlier work [Taroni F and Aitken CGG. Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence. Science & Justice 1998; 38: 165-177]. Different explanations of the value of DNA evidence were presented to students from two schools of forensic science and to members of fifteen laboratories all around the world. The responses were divided into two groups; those which came from a school or laboratory identified as Bayesian and those which came from a school or laboratory identified as non-Bayesian. The paper analyses these responses using a likelihood approach. This approach is more consistent with a Bayesian analysis than one based on a frequentist approach, as was reported by Taroni F and Aitken CGG. [Probabilistic reasoning in the law, Part 1: assessment of probabilities and explanation of the value of DNA evidence] in Science & Justice 1998.
Resumo:
We have recently cloned the human homologue of the murine pT49 cDNA (hpT49h), a transcript encoding a protein homologous to the beta- and gamma-chains of fibrinogen. Here, we report the identification of the hpT49h gene product using mAbs generated against a peptide corresponding to the carboxyl-terminal end of the deduced protein and a recombinant protein fragment expressed in Escherichia coli. mAbs 23A6, 7B12, and 3F4 specifically recognized a protein of 70 kDa in reducing SDS-PAGE in the culture supernatant of 293T cells transiently transfected with the full length hpT49h cDNA and freshly isolated PBMC. Under nonreducing conditions, the material migrated with a molecular mass of 250 to 300 kDa, indicating that the 70-kDa protein forms a disulfide bonded complex. Because of its homology with fibrinogen, we have termed this protein fibroleukin. Fibroleukin is spontaneously secreted in vitro by freshly isolated CD4+ and CD8+ T lymphocytes. RT-PCR analysis revealed preferential expression of fibroleukin mRNA in memory T lymphocytes (CD3+/CD45R0+) compared with naive T lymphocytes (CD3+/CD45RA+). Fibroleukin production by PBMC was rapidly lost in culture. Production could be partially maintained in the presence of IFN-gamma, while T lymphocyte activation had no effect. To demonstrate fibroleukin production in vivo, we analyzed colon mucosa by immunohistology. Fibroleukin staining was detected in the extracellular matrix of the T lymphocyte-rich upper portion of the lamina propria mucosa. While the exact function of fibroleukin remains to be defined, these data suggest that fibroleukin may play a role in physiologic lymphocyte functions at mucosal sites.
Resumo:
The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.
Resumo:
Resume : L'utilisation de l'encre comme indice en sciences forensiques est décrite et encadrée par une littérature abondante, comprenant entre autres deux standards de l'American Society for Testing and Materials (ASTM). La grande majorité de cette littérature se préoccupe de l'analyse des caractéristiques physiques ou chimiques des encres. Les standards ASTM proposent quelques principes de base qui concernent la comparaison et l'interprétation de la valeur d'indice des encres en sciences forensiques. L'étude de cette littérature et plus particulièrement des standards ASTM, en ayant a l'esprit les développements intervenus dans le domaine de l'interprétation de l'indice forensique, montre qu'il existe un potentiel certain pour l'amélioration de l'utilisation de l'indice encre et de son impact dans l'enquête criminelle. Cette thèse propose d'interpréter l'indice encre en se basant sur le cadre défini par le théorème de Bayes. Cette proposition a nécessité le développement d'un système d'assurance qualité pour l'analyse et la comparaison d'échantillons d'encre. Ce système d'assurance qualité tire parti d'un cadre théorique nouvellement défini. La méthodologie qui est proposée dans ce travail a été testée de manière compréhensive, en tirant parti d'un set de données spécialement créer pour l'occasion et d'outils importés de la biométrie. Cette recherche répond de manière convaincante à un problème concret généralement rencontré en sciences forensiques. L'information fournie par le criminaliste, lors de l'examen de traces, est souvent bridée, car celui-ci essaie de répondre à la mauvaise question. L'utilisation d'un cadre théorique explicite qui définit et formalise le goal de l'examen criminaliste, permet de déterminer les besoins technologiques et en matière de données. Le développement de cette technologie et la collection des données pertinentes peut être justifiées économiquement et achevée de manière scientifique. Abstract : The contribution of ink evidence to forensic science is described and supported by an abundant literature and by two standards from the American Society for Testing and Materials (ASTM). The vast majority of the available literature is concerned with the physical and chemical analysis of ink evidence. The relevant ASTM standards mention some principles regarding the comparison of pairs of ink samples and the evaluation of their evidential value. The review of this literature and, more specifically, of the ASTM standards in the light of recent developments in the interpretation of forensic evidence has shown some potential improvements, which would maximise the benefits of the use of ink evidence in forensic science. This thesis proposes to interpret ink evidence using the widely accepted and recommended Bayesian theorem. This proposition has required the development of a new quality assurance process for the analysis and comparison of ink samples, as well as of the definition of a theoretical framework for ink evidence. The proposed technology has been extensively tested using a large dataset of ink samples and state of the art tools, commonly used in biometry. Overall, this research successfully answers to a concrete problem generally encountered in forensic science, where scientists tend to self-limit the usefulness of the information that is present in various types of evidence, by trying to answer to the wrong questions. The declaration of an explicit framework, which defines and formalises their goals and expected contributions to the criminal and civil justice system, enables the determination of their needs in terms of technology and data. The development of this technology and the collection of the data is then justified economically, structured scientifically and can be proceeded efficiently.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
PURPOSE: We report the long-term results of a randomized clinical trial comparing induction therapy with once per week for 4 weeks single-agent rituximab alone versus induction followed by 4 cycles of maintenance therapy every 2 months in patients with follicular lymphoma. PATIENTS AND METHODS: Patients (prior chemotherapy 138; chemotherapy-naive 64) received single-agent rituximab and if nonprogressive, were randomly assigned to no further treatment (observation) or four additional doses of rituximab given at 2-month intervals (prolonged exposure). RESULTS: At a median follow-up of 9.5 years and with all living patients having been observed for at least 5 years, the median event-free survival (EFS) was 13 months for the observation and 24 months for the prolonged exposure arm (P < .001). In the observation arm, patients without events at 8 years were 5%, while in the prolonged exposure arm they were 27%. Of previously untreated patients receiving prolonged treatment after responding to rituximab induction, at 8 years 45% were still without event. The only favorable prognostic factor for EFS in a multivariate Cox regression was the prolonged rituximab schedule (hazard ratio, 0.59; 95% CI, 0.39 to 0.88; P = .009), whereas being chemotherapy naive, presenting with stage lower than IV, and showing a VV phenotype at position 158 of the Fc-gamma RIIIA receptor were not of independent prognostic value. No long-term toxicity potentially due to rituximab was observed. CONCLUSION: An important proportion of patients experienced long-term remission after prolonged exposure to rituximab, particularly if they had no prior treatment and responded to rituximab induction.
Resumo:
Although the T-cell receptor αδ (TCRαδ) locus harbours large libraries of variable (TRAV) and junctional (TRAJ) gene segments, according to previous studies the TCRα chain repertoire is of limited diversity due to restrictions imposed by sequential coordinate TRAV-TRAJ recombinations. By sequencing tens of millions of TCRα chain transcripts from naive mouse CD8(+) T cells, we observed a hugely diverse repertoire, comprising nearly all possible TRAV-TRAJ combinations. Our findings are not compatible with sequential coordinate gene recombination, but rather with a model in which contraction and DNA looping in the TCRαδ locus provide equal access to TRAV and TRAJ gene segments, similarly to that demonstrated for IgH gene recombination. Generation of the observed highly diverse TCRα chain repertoire necessitates deletion of failed attempts by thymic-positive selection and is essential for the formation of highly diverse TCRαβ repertoires, capable of providing good protective immunity.