210 resultados para NUCLEAR BETA-CATENIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

GLUT2 expression is reduced in the pancreatic beta-cells of several diabetic animals. The transcriptional control of the gene in beta-cells involves at least two islet-specific DNA-binding proteins, GTIIa and PDX-1, which also transactivates the insulin, somatostatin and glucokinase genes. In this report, we assessed the DNA-binding activities of GTIIa and PDX-1 to their respective cis-elements of the GLUT2 promoter using nuclear extracts prepared from pancreatic islets of 12 week old db/db diabetic mice. We show that the decreased GLUT2 mRNA expression correlates with a decrease of the GTIIa DNA-binding activity, whereas the PDX-1 binding activity is increased. In these diabetic animals, insulin mRNA expression remains normal. The adjunction of dexamethasone to isolated pancreatic islets, a treatment previously shown to decrease PDX-1 expression in the insulin-secreting HIT-T15 cells, has no effect on the GTIIa and PDX-1 DNA-binding activities. These data suggest that the decreased activity of GTIIa, in contrast to PDX-1, may be a major initial step in the development of the beta-cell dysfunction in this model of diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously reported that interleukin-1beta (IL-1beta) alone does not cause apoptosis of beta-cells, whereas when combined with gamma-interferon (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha), it exerts a distinct apoptotic effect. Studies in beta-cell lines indicated that IL-1beta reduced expression of islet brain (IB)-1/JNK interacting protein (JIP)-1, a JNK scaffold protein with antiapoptotic action. We examined whether variations in IB1/JIP-1 expression in purified primary beta-cells affect their susceptibility to cytokine-induced apoptosis. Exposure to IL-1beta for 24 h decreased cellular IB1/JIP-1 content by 66 +/- 17%; this IL-1beta effect was maintained in the presence of TNF-alpha + IFN-gamma, which did not influence IB1/JIP-1 levels by themselves. Addition of IL-1beta to TNF-alpha + IFN-gamma increased apoptosis from 20 +/- 2% to 59 +/- 5%. A similar increase in TNF-alpha + IFN-gamma-induced apoptosis was produced by adenoviral expression of antisense IB1/JIP-1 and was not further enhanced by addition of IL-1beta, indicating that IL-1beta-mediated suppression of IB1/JIP-1 in beta-cells increases their susceptibility to cytokine-induced apoptosis. However, adenovirally mediated overexpression of IB1/JIP-1 also potentiated TNF-alpha + IFN-gamma-induced apoptosis, suggesting that the antiapoptotic effect of IB1/JIP-1 depends on well-defined cellular levels. We conclude that the IB1/JIP-1 level in beta-cells can control their susceptibility to apoptosis independent of JNK signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1) catalyzes the glucuronidation of bilirubin in liver. Among all UGT isoforms identified to date, it is the only relevant bilirubin-glucuronidating enzyme in human. Because glucuronoconjugation is the major route of bilirubin elimination, any genetic alteration that affects bilirubin glucuronosyltransferase activity may result in a more or less severe hyperbilirubinemia. In this study, we report the cloning and characterization of the transcriptional regulation of the mouse UGT1A1 gene. Primary-structure analysis of the mouse Thymidine Adevice promoter revealed marked differences with its human homolog. First, the mouse promoter lacks the highly polymorphic thymidine/adenine repeat occurring in the human promoter, which has been associated with some forms of hyperbilirubinemia. Second, an L1 transposon element, which is absent in the human promoter, is found 480 bp upstream of the transcription start site in mouse. Using the electromobility shift and DNase I footprinting experiments, we have identified a hepatocyte nuclear factor 1-binding site in the mouse UGT1A1 promoter that confers responsiveness to both factors HNF1alpha and HNF1beta in HEK293 cells. Furthermore, we show that this element, which is conserved in the human promoter, also confers strong HNF1 responsiveness to the human UGT1A1 gene. Together, these results provide evidence for a major regulatory function of this liver-enriched transcription factor in UGT1A1 activity in both rodents and human.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPAR) dysfunction has been implicated in the manifestation of many diseases and illnesses, ranging from obesity to cancer. Herein, we discuss the role of PPARbeta, one of the three PPAR isotypes, during wound healing. While PPARbeta expression is undetectable in unchallenged and healthy adult interfollicular mouse skin, it is robustly re-activated in stress situations, such as upon phorbol ester treatment, hair plucking and cutaneous wounding. The inflammatory reaction associated with a skin injury activates the keratinocytes at the edges of the wound. This activation involves PPARbeta, whose expression and activity as transcription factor are up-regulated by pro-inflammatory signals. The re-activation of PPARbeta influences three important properties of the activated keratinocytes that are vital for rapid wound closure, namely, survival, migration and differentiation. The anti-apoptotic and, thus, survival role of PPARbeta is mediated by the up-regulation of expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1. Both kinases are required for the full activation of the Akt1 survival cascade. Therefore, the up-regulation of PPARbeta, early after injury, appears to be important to maintain a sufficient number of viable keratinocytes at the wound edge. At a later stage of wound repair, the stimulation of keratinocyte migration and differentiation by PPARbeta is also likely to be important for the formation of a new epidermis at the wounded area. Consistent with these observations, the entire wound healing process is delayed in PPARbeta +/- mice and wound closure is retarded by 2-3 days. The multiple roles of PPARbeta in the complex keratinocyte response after injury and during skin repair certainly justify a further exploration of its potential as a target for wound healing drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor alpha (PPARalpha) is an important transcription factor in liver that can be activated physiologically by fasting or pharmacologically by using high-affinity synthetic agonists. Here we initially set out to elucidate the similarities in gene induction between Wy14643 and fasting. Numerous genes were commonly regulated in liver between the two treatments, including many classical PPARalpha target genes, such as Aldh3a2 and Cpt2. Remarkably, several genes induced by Wy14643 were upregulated by fasting independently of PPARalpha, including Lpin2 and St3gal5, suggesting involvement of another transcription factor. Using chromatin immunoprecipitation, Lpin2 and St3gal5 were shown to be direct targets of PPARbeta/delta during fasting, whereas Aldh3a2 and Cpt2 were exclusive targets of PPARalpha. Binding of PPARbeta/delta to the Lpin2 and St3gal5 genes followed the plasma free fatty acid (FFA) concentration, consistent with activation of PPARbeta/delta by plasma FFAs. Subsequent experiments using transgenic and knockout mice for Angptl4, a potent stimulant of adipose tissue lipolysis, confirmed the stimulatory effect of plasma FFAs on Lpin2 and St3gal5 expression levels via PPARbeta/delta. In contrast, the data did not support activation of PPARalpha by plasma FFAs. The results identify Lpin2 and St3gal5 as novel PPARbeta/delta target genes and show that upregulation of gene expression by PPARbeta/delta is sensitive to plasma FFA levels. In contrast, this is not the case for PPARalpha, revealing a novel mechanism for functional differentiation between PPARs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Our laboratory has previously established in vitro that a caspase-generated RasGAP NH(2)-terminal moiety, called fragment N, potently protects cells, including insulinomas, from apoptotic stress. We aimed to determine whether fragment N can increase the resistance of pancreatic beta-cells in a physiological setting. RESEARCH DESIGN AND METHODS: A mouse line, called rat insulin promoter (RIP)-N, was generated that bears a transgene containing the rat insulin promoter followed by the cDNA-encoding fragment N. The histology, functionality, and resistance to stress of RIP-N islets were then assessed. RESULTS: Pancreatic beta-cells of RIP-N mice express fragment N, activate Akt, and block nuclear factor kappaB activity without affecting islet cell proliferation or the morphology and cellular composition of islets. Intraperitoneal glucose tolerance tests revealed that RIP-N mice control their glycemia similarly as wild-type mice throughout their lifespan. Moreover, islets isolated from RIP-N mice showed normal glucose-induced insulin secretory capacities. They, however, displayed increased resistance to apoptosis induced by a series of stresses including inflammatory cytokines, fatty acids, and hyperglycemia. RIP-N mice were also protected from multiple low-dose streptozotocin-induced diabetes, and this was associated with reduced in vivo beta-cell apoptosis. CONCLUSIONS: Fragment N efficiently increases the overall resistance of beta-cells to noxious stimuli without interfering with the physiological functions of the cells. Fragment N and the pathway it regulates represent, therefore, a potential target for the development of antidiabetes tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immediate response to skin injury is the release of inflammatory signals. It is shown here, by use of cultures of primary keratinocytes from wild-type and PPAR beta/delta(-/-) mice, that such signals including TNF-alpha and IFN-gamma, induce keratinocyte differentiation. This cytokine-dependent cell differentiation pathway requires up-regulation of the PPAR beta/delta gene via the stress-associated kinase cascade, which targets an AP-1 site in the PPAR beta/delta promoter. In addition, the pro-inflammatory cytokines also initiate the production of endogenous PPAR beta/delta ligands, which are essential for PPAR beta/delta activation and action. Activated PPAR beta/delta regulates the expression of genes associated with apoptosis resulting in an increased resistance of cultured keratinocytes to cell death. This effect is also observed in vivo during wound healing after an injury, as shown in dorsal skin of PPAR beta/delta(+/+) and PPAR beta/delta(+/-) mice.