203 resultados para Multicellular aggregation
Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions.
Resumo:
Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication-a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms. Polar PIN localization determines the direction of intercellular auxin flow, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.
Resumo:
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.
Resumo:
PURPOSE: The perioperative treatment of patients on dual antiplatelet therapy after myocardial infarction, cerebrovascular event or coronary stent implantation represents an increasingly frequent issue for urologists and anesthesiologists. We assess the current scientific evidence and propose strategies concerning treatment of these patients. MATERIALS AND METHODS: A MEDLINE and PubMed search was conducted for articles related to antiplatelet therapy after myocardial infarction, coronary stents and cerebrovascular events, as well as the use of aspirin and/or clopidogrel in the context of surgery. RESULTS: Early discontinuation of antiplatelet therapy for secondary prevention is associated with a high risk of coronary thrombosis, which is further increased by the hypercoagulable state induced by surgery. Aspirin has recently been recommended as a lifelong therapy. Clopidogrel is mandatory for 6 weeks after myocardial infarction and bare metal stents, and for 12 months after drug-eluting stents. Surgery must be postponed beyond these waiting periods or performed with patients receiving dual antiplatelet therapy because withdrawal therapy increases 5 to 10 times the risk of postoperative myocardial infarction, stent thrombosis or death. The shorter the waiting period between revascularization and surgery the greater the risk of adverse cardiac events. The risk of surgical hemorrhage is increased approximately 20% by aspirin and 50% by clopidogrel. CONCLUSIONS: The risk of coronary thrombosis when antiplatelet agents are withdrawn before surgery is generally higher than the risk of surgical hemorrhage when antiplatelet agents are maintained. However, this issue has not yet been sufficiently evaluated in urological patients and in many instances during urological surgery the risk of bleeding can be dangerous. A thorough dialogue among surgeon, cardiologist and anesthesiologist is essential to determine all risk factors and define the best possible strategy for each patient.
Resumo:
Background: The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results: The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions: Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential.
Resumo:
In order to study peptide growth factor action in a three-dimensional cellular environment, aggregating cell cultures prepared from 15-day fetal rat telencephalon were grown in a chemically defined medium and treated during an early developmental stage with either bovine fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF homodimers AA and BB). A single dose (5-50 ng/ml) of either growth factor given to the cultures on day 3 greatly enhanced the developmental increase of the two glia-specific enzyme activities, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and glutamine synthetase (GS), whereas it had relatively little effect on total protein and DNA content. Distinct patterns of dose-dependency were found for CNP and GS stimulation. At low concentrations of bFGF (0.5-5 ng/ml) and at all PDGF concentrations applied, the oligodendroglial marker enzyme CNP was the most affected. A relatively small but significant mitogenic effect was observed after treatment with PDGF, particularly at higher concentrations or after repetitive stimulation. The two PDGF homodimers AA and BB were similar in their biological effects and potency. The present results show that under histotypic conditions both growth factors, bFGF and PDGF, promote the maturation rather than the proliferation of immature oligodendrocytes and astrocytes.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.
Resumo:
During mild heat-stress, a native thermolabile polypeptide may partially unfold and transiently expose water-avoiding hydrophobic segments that readily tend to associate into a stable misfolded species, rich in intra-molecular non-native beta-sheet structures. When the concentration of the heat-unfolded intermediates is elevated, the exposed hydrophobic segments tend to associate with other molecules into large stable insoluble complexes, also called "aggregates." In mammalian cells, stress- and mutation-induced protein misfolding and aggregation may cause degenerative diseases and aging. Young cells, however, effectively counteract toxic protein misfolding with a potent network of molecular chaperones that bind hydrophobic surfaces and actively unfold otherwise stable misfolded and aggregated polypeptides. Here, we followed the behavior of a purified, initially mostly native thermolabile luciferase mutant, in the presence or absence of the Escherichia coli DnaK-DnaJ-GrpE chaperones and/or of ATP, at 22 °C or under mild heat-stress. We concomitantly measured luciferase enzymatic activity, Thioflavin-T fluorescence, and light-scattering to assess the effects of temperature and chaperones on the formation, respectively, of native, unfolded, misfolded, and/or of aggregated species. During mild heat-denaturation, DnaK-DnaJ-GrpE+ATP best maintained, although transiently, high luciferase activity and best prevented heat-induced misfolding and aggregation. In contrast, the ATP-less DnaK and DnaJ did not maintain optimal luciferase activity and were less effective at preventing luciferase misfolding and aggregation. We present a model accounting for the experimental data, where native, unfolded, misfolded, and aggregated species spontaneously inter-convert, and in which DnaK-DnaJ-GrpE+ATP specifically convert stable misfolded species into unstable unfolded intermediates.
Resumo:
BACKGROUND: The use of the family history method is recommended in family studies as a type of proxy interview of non-participating relatives. However, using different sources of information can result in bias as direct interviews may provide a higher likelihood of assigning diagnoses than family history reports. The aims of the present study were to: 1) compare diagnoses for threshold and subthreshold mood syndromes from interviews to those relying on information from relatives; 2) test the appropriateness of lowering the diagnostic threshold and combining multiple reports from the family history method to obtain comparable prevalence estimates to the interviews; 3) identify factors that influence the likelihood of agreement and reporting of disorders by informants. METHODS: Within a family study, 1621 informant-index subject pairs were identified. DSM-5 diagnoses from direct interviews of index subjects were compared to those derived from family history information provided by their first-degree relatives. RESULTS: 1) Inter-informant agreement was acceptable for Mania, but low for all other mood syndromes. 2) Except for Mania and subthreshold depression, the family history method provided significantly lower prevalence estimates. The gap improved for all other syndromes after lowering the threshold of the family history method. 3) Individuals who had a history of depression themselves were more likely to report depression in their relatives. LIMITATIONS: Low proportion of affected individuals for manic syndromes and lack of independence of data. CONCLUSIONS: The higher likelihood of reporting disorders by affected informants entails the risk of overestimation of the size of familial aggregation of depression.
Resumo:
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Resumo:
Chaperonins are cage-like complexes in which nonnative polypeptides prone to aggregation are thought to reach their native state optimally. However, they also may use ATP to unfold stably bound misfolded polypeptides and mediate the out-of-cage native refolding of large proteins. Here, we show that even without ATP and GroES, both GroEL and the eukaryotic chaperonin containing t-complex polypeptide 1 (CCT/TRiC) can unfold stable misfolded polypeptide conformers and readily release them from the access ways to the cage. Reconciling earlier disparate experimental observations to ours, we present a comprehensive model whereby following unfolding on the upper cavity, in-cage confinement is not needed for the released intermediates to slowly reach their native state in solution. As over-sticky intermediates occasionally stall the catalytic unfoldase sites, GroES mobile loops and ATP are necessary to dissociate the inhibitory species and regenerate the unfolding activity. Thus, chaperonin rings are not obligate confining antiaggregation cages. They are polypeptide unfoldases that can iteratively convert stable off-pathway conformers into functional proteins.
Resumo:
BACKGROUND: Treatment strategies for acute basilar artery occlusion (BAO) are based on case series and data that have been extrapolated from stroke intervention trials in other cerebrovascular territories, and information on the efficacy of different treatments in unselected patients with BAO is scarce. We therefore assessed outcomes and differences in treatment response after BAO. METHODS: The Basilar Artery International Cooperation Study (BASICS) is a prospective, observational registry of consecutive patients who presented with an acute symptomatic and radiologically confirmed BAO between November 1, 2002, and October 1, 2007. Stroke severity at time of treatment was dichotomised as severe (coma, locked-in state, or tetraplegia) or mild to moderate (any deficit that was less than severe). Outcome was assessed at 1 month. Poor outcome was defined as a modified Rankin scale score of 4 or 5, or death. Patients were divided into three groups according to the treatment they received: antithrombotic treatment only (AT), which comprised antiplatelet drugs or systemic anticoagulation; primary intravenous thrombolysis (IVT), including subsequent intra-arterial thrombolysis; or intra-arterial therapy (IAT), which comprised thrombolysis, mechanical thrombectomy, stenting, or a combination of these approaches. Risk ratios (RR) for treatment effects were adjusted for age, the severity of neurological deficits at the time of treatment, time to treatment, prodromal minor stroke, location of the occlusion, and diabetes. FINDINGS: 619 patients were entered in the registry. 27 patients were excluded from the analyses because they did not receive AT, IVT, or IAT, and all had a poor outcome. Of the 592 patients who were analysed, 183 were treated with only AT, 121 with IVT, and 288 with IAT. Overall, 402 (68%) of the analysed patients had a poor outcome. No statistically significant superiority was found for any treatment strategy. Compared with outcome after AT, patients with a mild-to-moderate deficit (n=245) had about the same risk of poor outcome after IVT (adjusted RR 0.94, 95% CI 0.60-1.45) or after IAT (adjusted RR 1.29, 0.97-1.72) but had a worse outcome after IAT compared with IVT (adjusted RR 1.49, 1.00-2.23). Compared with AT, patients with a severe deficit (n=347) had a lower risk of poor outcome after IVT (adjusted RR 0.88, 0.76-1.01) or IAT (adjusted RR 0.94, 0.86-1.02), whereas outcomes were similar after treatment with IAT or IVT (adjusted RR 1.06, 0.91-1.22). INTERPRETATION: Most patients in the BASICS registry received IAT. Our results do not support unequivocal superiority of IAT over IVT, and the efficacy of IAT versus IVT in patients with an acute BAO needs to be assessed in a randomised controlled trial. FUNDING: Department of Neurology, University Medical Center Utrecht.
Resumo:
BACKGROUND: Highly recurrent major depressive disorder (MDD) has reportedly increased risk of shifting to bipolar disorder; high recurrence frequency has, therefore, featured as evidence of 'soft bipolarity'. We aimed to investigate the genetic underpinnings of total depressive episode count in recurrent MDD. METHODS: Our primary sample included 1966 MDD cases with negative family history of bipolar disorder from the RADIANT studies. Total episode count was adjusted for gender, age, MDD duration, study and center before being tested for association with genotype in two separate genome-wide analyses (GWAS), in the full set and in a subset of 1364 cases with positive family history of MDD (FH+). We also calculated polygenic scores from the Psychiatric Genomics Consortium MDD and bipolar disorder studies. RESULTS: Episodicity (especially intermediate episode counts) was an independent index of MDD familial aggregation, replicating previous reports. The GWAS produced no genome-wide significant findings. The strongest signals were detected in the full set at MAGI1 (p=5.1×10(-7)), previously associated with bipolar disorder, and in the FH+ subset at STIM1 (p=3.9×10(-6) after imputation), a calcium channel signaling gene. However, these findings failed to replicate in an independent Munich cohort. In the full set polygenic profile analyses, MDD polygenes predicted episodicity better than bipolar polygenes; however, in the FH+ subset, both polygenic scores performed similarly. LIMITATIONS: Episode count was self-reported and, therefore, subject to recall bias. CONCLUSIONS: Our findings lend preliminary support to the hypothesis that highly recurrent MDD with FH+ is part of a 'soft bipolar spectrum' but await replication in larger cohorts.
Resumo:
BACKGROUND: Infective endocarditis (IE) mostly occurs after spontaneous low-grade bacteremia. Thus, IE cannot be prevented by circumstantial antibiotic prophylaxis. Platelet activation following bacterial-fibrinogen interaction or thrombin-mediated fibrinogen-fibrin polymerization is a critical step in vegetation formation. We tested the efficacy of antiplatelet and antithrombin to prevent experimental IE. METHODS: A rat model of experimental IE following prolonged low-grade bacteremia mimicking smoldering bacteremia in humans was used. Prophylaxis with antiplatelets (aspirin, ticlopidine [alone or in combination], eptifibatide, or abciximab) or anticoagulants (antithrombin dabigatran etexilate or anti-vitamin K acenocoumarol) was started 2 days before inoculation with Streptococcus gordonii or Staphylococcus aureus. Valve infection was assessed 24 hours later. RESULTS: Aspirin plus ticlopidine, as well as abciximab, protected 45%-88% of animals against S. gordonii and S. aureus IE (P < .05). Dabigatran etexilate protected 75% of rats against IE due to S. aureus (P < .005) but failed to protect against S. gordonii (<30% protection). Acenocoumarol was ineffective. CONCLUSIONS: Antiplatelet and direct antithrombin agents may be useful in the prophylaxis of IE in humans. In particular, the potential dual benefit of dabigatran etexilate might be reconsidered for patients with prosthetic valves, who require life-long anticoagulation and in whom S. aureus IE is associated with high mortality.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon grown in the presence of 3 ng/ml (5 X 10(-10) M) epidermal growth factor (EGF) until day 12 showed 2- to 3-fold increased activities in the two glial enzymes, glutamine synthetase (GLU-S) and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). This effect was concentration-dependent, with maximal stimulation in cultures treated daily with 3 ng/ml EGF. Addition of EGF during the first 10 culture days was sufficient to produce a maximal stimulation of both GLU-S and CNPase on day 19, whereas treatments starting on day 12 were ineffective. The stimulation of GLU-S preceded that of CNPase. The EGF-induced increase in GLU-S activity was not directly dependent on the presence of insulin, triiodothyronine, or hydrocortisone in the medium, whereas insulin was required for the stimulation of CNPase. A single dose of 5 ng/ml EGF on day 2 caused a slight but significant decrease in DNA synthesis after day 6. The present results indicate that in serum-free aggregating cell cultures of fetal rat telencephalon EGF partially inhibits DNA synthesis, and stimulates an early step in glial differentiation.
Resumo:
The D2-protein is a high molecular weight protein involved in interneuronal adhesion. The concentration of D2-protein was measured both in aggregates of fetal rat telencephalic cells cultured in a chemically defined medium and in developing forebrain. Both the concentration of the D2-protein and the degree of sialylation were changed in the cultures in parallel with the corresponding values obtained from postnatal forebrain. In the cultures the highest specific concentration of D2-protein was observed after 12 days in culture. This value was 2.7 times higher than the average value of adult rat forebrain. Antibodies to D2-protein have previously been shown to inhibit fasciculation of neuritic fibers extending from cultured explants of sympathetic ganglia. We investigated the effect of such antibodies on the differentiation of aggregating telencephalic cells. By adding surplus antibodies to the cultures from day 11 to day 16 we were able to decrease the specific concentration of D2-protein on the neurons by 53% measured at day 19. The decrease was not compensated fully even after further 10 days in the culture. Although the concentration of D2-protein was decreased during the period of synaptogenesis no change was found in the specific concentration of a marker of mature synapses, the D3-protein. Thus, in this culture system synaptogenesis could proceed to an unimpaired extent in the presence of a decreased concentration of a putatively involved adhesion molecule. However, the specific concentration of two markers of myelination, 2',3'-cyclic nucleotide 3'-phosphodiesterase and myelin basic protein, were both increased, suggesting an antibody-induced stimulation of myelination in the cultured aggregates.