218 resultados para Multi-attribute reverse auctions
Resumo:
The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.
Resumo:
The aim of this study was to extract multi-parametric measures characterizing different features of sit-to-stand (Si-St) and stand-to-sit (St-Si) transitions in older persons, using a single inertial sensor attached to the chest. Investigated parameters were transition's duration, range of trunk tilt, smoothness of transition pattern assessed by its fractal dimension, and trunk movement's dynamic described by local wavelet energy. A measurement protocol with a Si-St followed by a St-Si postural transition was performed by two groups of participants: the first group (N=79) included Frail Elderly subjects admitted to a post-acute rehabilitation facility and the second group (N=27) were healthy community-dwelling elderly persons. Subjects were also evaluated with Tinetti's POMA scale. Compared to Healthy Elderly persons, frail group at baseline had significantly longer Si-St (3.85±1.04 vs. 2.60±0.32, p=0.001) and St-Si (4.08±1.21 vs. 2.81±0.36, p=0.001) transition's duration. Frail older persons also had significantly decreased smoothness of Si-St transition pattern (1.36±0.07 vs. 1.21±0.05, p=0.001) and dynamic of trunk movement. Measurements after three weeks of rehabilitation in frail older persons showed that smoothness of transition pattern had the highest improvement effect size (0.4) and discriminative performance. These results demonstrate the potential interest of such parameters to distinguish older subjects with different functional and health conditions.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of 10% was considered uninteresting and, conversely, promising if 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Resumo:
HYPOTHESIS: The nonanatomical design of reverse shoulder prostheses induce medial displacement of the center of rotation, impingements and may reduce the mobility of the shoulder. The aim of this study is to test the hypothesis that during activities of daily living functional mobility of the shoulder can be restored by scapular compensation. MATERIAL AND METHODS: A numerical 3-dimensional model was developed to reproduce the movement of the scapula and humerus, during 4 activities of daily living measured experimentally. This hypothesis was tested in 4 configurations of the aequalis reverse prosthesis (standard 36-mm glenosphere, 42-mm glenosphere, lateralized 36-mm glenosphere, lateralized Bony Increased-Offset Reverse Shoulder Arthroplasty [BIO-RSA]), which were implanted in the virtual model. All impingement positions were evaluated, as the required scapular compensation to avoid impingements. RESULTS: With the 36-mm glenosphere, impingements occurred only for rest of hand to back-pocket positions. The 42-mm partly improved the mobility. The 2 lateralized glenospheres were free of impingement. When impingements occurred, the scapular compensation was less than 10°. CONCLUSION: Most reverse prostheses impingements reported in clinical and biomechanical studies can be avoided, either by scapular compensation or by a glenosphere lateralization. After reverse shoulder arthroplasty, a fraction of the mobility of the gleno-humeral is transferred to the scapulo-thoracic joint.
Resumo:
The valuation of human costs is a necessity, but this task poses many problems of method. A team made of a philosopher, a psychologist and a physician has been working with economist researchers in order to look into the meaning that the preferences announced at the time of the inquiries on human costs by QALY methods could assume. These methods are often used to obtain a valuation of the impact of a health attack on people's quality of life. The methods--in the frame of the argument assumed by the economic theory on well-being--hypothesize that people's choices depend mainly on cognitive work. The qualitative interviews show that the psychological construction process for the announced preferences largely overlap this frame. In this paper the authors hastily tackle the factors which have an effect on the preferences. They conclude that the QALY methods don't seem to be able to assess the quality of life nori to valuate the damage that the quality of life could include.
Resumo:
The joint angles of multi-segment foot models have been primarily described using two mathematical methods: the joint coordinate system and the attitude vector. This study aimed to determine whether the angles obtained through these two descriptors are comparable, and whether these descriptors have similar sensitivity to experimental errors. Six subjects walked eight times on an instrumented walkway while the joint angles among shank, hindfoot, medial forefoot, and lateral forefoot were measured. The angles obtained using both descriptors and their sensitivity to experimental errors were compared. There was no overall significant difference between the ranges of motion obtained using both descriptors. However, median differences of more than 6° were noticed for the medial-lateral forefoot joint. For all joints and rotation planes, both descriptors provided highly similar angle patterns (median correlation coefficient: R>0.90), except for the medial-lateral forefoot angle in the transverse plane (median R=0.77). The joint coordinate system was significantly more sensitive to anatomical landmarks misplacement errors. However, the absolute differences of sensitivity were small relative to the joints ranges of motion. In conclusion, the angles obtained using these two descriptors were not identical, but were similar for at least the shank-hindfoot and hindfoot-medial forefoot joints. Therefore, the angle comparison across descriptors is possible for these two joints. Comparison should be done more carefully for the medial-lateral forefoot joint. Moreover, despite different sensitivities to experimental errors, the effects of the experimental errors on the angles were small for both descriptors suggesting that both descriptors can be considered for multi-segment foot models.
Resumo:
Introduction: Several studies have reported significant alteration of the scapula-humeral rythm after total shoulder arthroplasty. However, the biomechanical and clinical effects, particularly on implants lifespan, are still unknown. The goal of this study was to evaluate the biomechanical consequences of an altered scapula-humeral rhythm. Methods: A numerical musculoskeletal model of the shoulder was used. The model included the scapula, the humerus and 6 scapulohumeral muscles: middle, anterior, and posterior deltoid, supraspinatus, subscapularis and infraspinatus combined with teres minor. Arm motion and joint stability were achieved by muscles. The reverse and anatomic Aequalis prostheses (Tornier Inc) were inserted. Two scapula-humeral rhythms were considered for each prosthesis: a normal 2:1 rhythm, and an altered 1:2 rhythm. For the 4 configurations, a movement of abduction in the scapular plane was simulated. The gleno-humeral force and contact pattern, but also the stress in the polyethylene and cement were evaluated. Results: With the anatomical prosthesis, the gleno-humeral force increased of 23% for the altered rhythm, with a more eccentric (posterior and superior) contact. The contact pressure, polyethylene stress, and cement stress increased respectively by 20%, 48% and 64%. With the reverse prosthesis, the gleno-humeral force increased of 11% for an altered rhythm. There was nearly no effect on the contact pattern on the polyethylene component surface. Conclusion: The present study showed that alteration oft the scapula-humeral rythm induced biomechanical consequences which could preclude the long term survival of the glenoid implant of anatomic prostheses. However,an altered scapula-humeral rhythm, even severe, should not be a contra indication for the use of a reverse prosthesis.
Resumo:
To date, state-of-the-art seismic material parameter estimates from multi-component sea-bed seismic data are based on the assumption that the sea-bed consists of a fully elastic half-space. In reality, however, the shallow sea-bed generally consists of soft, unconsolidated sediments that are characterized by strong to very strong seismic attenuation. To explore the potential implications, we apply a state-of-the-art elastic decomposition algorithm to synthetic data for a range of canonical sea-bed models consisting of a viscoelastic half-space of varying attenuation. We find that in the presence of strong seismic attenuation, as quantified by Q-values of 10 or less, significant errors arise in the conventional elastic estimation of seismic properties. Tests on synthetic data indicate that these errors can be largely avoided by accounting for the inherent attenuation of the seafloor when estimating the seismic parameters. This can be achieved by replacing the real-valued expressions for the elastic moduli in the governing equations in the parameter estimation by their complex-valued viscoelastic equivalents. The practical application of our parameter procedure yields realistic estimates of the elastic seismic material properties of the shallow sea-bed, while the corresponding Q-estimates seem to be biased towards too low values, particularly for S-waves. Given that the estimation of inelastic material parameters is notoriously difficult, particularly in the immediate vicinity of the sea-bed, this is expected to be of interest and importance for civil and ocean engineering purposes.