144 resultados para Motor impairment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis. To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells. We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction : Driving is a complex everyday task requiring mechanisms of perception, attention, learning, memory, decision making and action control, thus indicating that involves numerous and varied brain networks. If many data have been accumulated over time about the effects of alcohol consumption on driving capability, much less is known about the role of other psychoactive substances, such as cannabis (Chang et al.2007, Ramaekers et al, 2006). Indeed, the solicited brain areas during safe driving which could be affected by cannabis exposure have not yet been clearly identified. Our aim is to study these brain regions during a tracking task related to driving skills and to evaluate the modulation due to the tolerance of cannabis effects. Methods : Eight non-smoker control subjects participated to an fMRI experiment based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. Half of the active tracking conditions included randomly presented traffic lights as distractors. Subjects were asked to track with a joystick with their right hand and to press a button with their left index at each appearance of a distractor. Four smoking subjects participated to the same fMRI sessions once before and once after smoking cannabis and a placebo in two independent cross-over experiments. We quantified the performance of the subjects by measuring the precision of the behavioural responses (i.e. percentage of time of correct tracking and reaction times to distractors). Functional MRI data were acquired using on a 3.0T Siemens Trio system equipped with a 32-channel head coil. BOLD signals will be obtained with a gradient-echo EPI sequence (TR=2s, TE=30ms, FoV=216mm, FA=90°, matrix size 72×72, 32 slices, thickness 3mm). Preprocessing, single subject analysis and group statistics were conducted on SPM8b. Results were thresholded at p<0.05 (FWE corrected) and at k>30 for spatial extent. Results : Behavioural results showed a significant impairment in task and cognitive test performance of the subjects after cannabis inhalation when comparing their tracking accuracy either to the controls subjects or to their performances before the inhalation or after the placebo inhalation (p<0.001 corrected). In controls, fMRI BOLD analysis of the active tracking condition compared to the passive one revealed networks of polymodal areas in superior frontal and parietal cortex dealing with attention and visuo-spatial coordination. In accordance to what is known of the visual and sensory motor networks we found activations in V4, frontal eye-field, right middle frontal gyrus, intra-parietal sulcus, temporo-parietal junction, premotor and sensory-motor cortex. The presence of distractors added a significant activation in the precuneus. Preliminary results on cannabis smokers in the acute phase, compared either to themselves before the cannabis inhalation or to control subjects, showed a decreased activation in large portions of the frontal and parietal attention network during the simple tracking task, but greater involvement of precuneus, of the superior part of intraparietal sulcus and middle frontal gyrus bilaterally when distractors were present in the task. Conclusions : Our preliminary results suggest that acute cannabis smoking alters performances and brain activity during active tracking tasks, partly reorganizing the recruitment of brain areas of the attention network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the involvement of entorhinal cortex, hippocampus, and associative cortical areas is well established. Regarding the involvement of the primary motor cortex the reported data are contradictory. In order to determine whether the primary motor cortex is involved in AD, the brains of 29 autopsy cases were studied, including, 17 cases with severe cortical AD-type changes with definite diagnoses of AD, 7 age-matched cases with discrete to moderate cortical AD-type changes, and 5 control cases without any AD-type cortical changes. Morphometric analysis of the cortical surface occupied by senile plaques (SPs) on beta-amyloid-immunostained sections and quantitative analysis of neurofibrillary tangles (NFTs) on Gallyas-stained sections was performed in 5 different cortical areas including the primary motor cortex. The percentage of cortical surface occupied by SPs was similar in all cortical areas, without significant difference and corresponded to 16.7% in entorhinal cortex, 21.3% in frontal associative, 16% in parietal associative, and 15.8% in primary motor cortex. The number of NFTs in the entorhinal cortex was significantly higher (41 per 0.4 mm2), compared with those in other cortical areas (20.5 in frontal, 17.9 in parietal and 11.5 in the primary motor cortex). Our findings indicate that the primary motor cortex is significantly involved in AD and suggest the appearance of motor dysfunction in late and terminal stages of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is an inherited form of retinal degeneration that leads to progressive visual-field constriction and blindness. Although the disease manifests only in the retina, mutations in ubiquitously expressed genes associated with the tri-snRNP complex of the spliceosome have been identified in patients with dominantly inherited RP. We screened for mutations in PRPF6 (NM_012469.3), a gene on chromosome 20q13.33 encoding an essential protein for tri-snRNP assembly and stability, in 188 unrelated patients with autosomal-dominant RP and identified a missense mutation, c.2185C>T (p.Arg729Trp). This change affected a residue that is conserved from humans to yeast and cosegregated with the disease in the family in which it was identified. Lymphoblasts derived from patients with this mutation showed abnormal localization of endogenous PRPF6 within the nucleus. Specifically, this protein accumulated in the Cajal bodies, indicating a possible impairment in the tri-snRNP assembly or recycling. Expression of GFP-tagged PRPF6 in HeLa cells showed that this phenomenon depended exclusively on the mutated form of the protein. Furthermore, analysis of endogenous transcripts in cells from patients revealed intron retention for pre-mRNA bearing specific splicing signals, according to the same pattern displayed by lymphoblasts with mutations in other PRPF genes. Our results identify PRPF6 as the sixth gene involved in pre-mRNA splicing and dominant RP, corroborating the hypothesis that deficiencies in the spliceosome play an important role in the molecular pathology of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:: Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in non-human primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues. OBJECTIVE:: To test in non-human primates the transplantation of autologous adult neural progenitor cortical cells with assessment of functional outcome. METHODS:: Seven adult macaque monkeys were trained to perform a manual dexterity task, before the hand representation in motor cortex was chemically lesioned unilaterally. Five monkeys were used as control, compared to two monkeys subjected to different autologous cells transplantation protocols performed at different time intervals. RESULTS:: After lesion, there was a complete loss of manual dexterity in the contralesional hand. The five "control" monkeys recovered progressively and spontaneously part of their manual dexterity, reaching a unique and definitive plateau of recovery, ranging from 38% to 98% of pre-lesion score after 10 to 120 days. The two "treated" monkeys reached a first spontaneous recovery plateau at about 25 and 40 days post-lesion, representing 35% and 61% of the pre-lesion performance, respectively. In contrast to the controls, a second recovery plateau took place 2-3 months after cell transplantation, corresponding to an additional enhancement of functional recovery, representing 24 and 37% improvement, respectively. CONCLUSIONS:: These pilot data, derived from two monkeys treated differently, suggest that, in the present experimental conditions, autologous adult brain progenitor cell transplantation in non-human primate is safe and promotes enhancement of functional recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-dose cefepime therapy is recommended for febrile neutropenia. Safety issues have been raised in a recent meta-analysis reporting an increased risk of mortality during cefepime therapy. Cefepime-related neurological toxicity has been associated with overdosing due to severe renal dysfunction. This study aimed to investigate the association between cefepime plasma concentrations and neurological toxicity in febrile neutropenic patients. Cefepime trough concentrations (by high-performance liquid chromatography) were retrospectively analyzed for 30 adult febrile neutropenic patients receiving the recommended high-dose regimen (6 g/day for a glomerular filtration rate [GFR] of >50 ml/min). The dose adjustment to renal function was evaluated by the ratio of the cefepime daily dose per 100 ml/min of glomerular filtration. The association between cefepime plasma concentrations and neurological toxicity was assessed on the basis of consistent neurological symptoms and/or signs (by NCI criteria). The median cefepime concentration was 8.7 mg/liter (range, 2.1 to 38 mg/liter) at a median of 4 days (range, 2 to 15 days) after the start of therapy. Neurological toxicity (altered mental status, hallucinations, or myoclonia) was attributed to cefepime in 6/30 (20%) patients (median GFR, 45 ml/min; range, 41 to 65 ml/min) receiving a median dose of 13.2 g/day per 100 ml/min GFR (range, 9.2 to 14.3 g/day per 100 ml/min GFR). Cefepime discontinuation resulted in complete neurological recovery for five patients and improvement for one patient. A multivariate logistic regression model confirmed high cefepime concentrations as an independent predictor of neurological toxicity, with a 50% probability threshold at ≥22 mg/liter (P = 0.05). High cefepime plasma concentrations are associated with neurological toxicity in febrile neutropenic patients with mild renal dysfunction. Careful adherence to normalized dosing per 100 ml/min GFR is crucial. Monitoring of plasma concentrations may contribute to preventing neurological toxicity of high-dose therapy for this life-threatening condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high-resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pearson marrow-pancreas syndrome (PS) is usually a fatal mitochondrial disease, mostly diagnosed during infancy or postmortem. PS is caused by the deletions or duplications of mitochondrial DNA (mtDNA). The tissue distribution and relative proportions of expressed abnormal mtDNA determine the phenotype and the clinical course. MATERIALS AND METHODS: We describe the case of a term baby boy who was diagnosed with PS early in the neonatal period due to severe aregenerative anemia and persistent lactic acidosis. RESULTS: His neurological examination was abnormal since birth. Brain magnetic resonance imaging (MRI) at term was abnormal, indicating that mitochondrial encephalopathy in PS can be already manifested in the neonatal period. To our knowledge, neonatal encephalopathy in PS has not been previously described. CONCLUSION: PS is a rare condition diagnosed in the newborn. It should be suspected in the presence of severe anemia and persistent lactic acidosis, and may manifest with early encephalopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report four patients who presented with a severe form of metaphyseal chondromatosis in association with D-2-hydroxyglutaric aciduria (D-2-HGA). All patients showed splaying columns of irregular ossification defects with bulbous metaphyses of the long tubular bones, as well as remarkable involvement of the short tubular and flat bones. The vertebral bodies revealed platyspondyly with irregular, stippled endplates. D-2-HGA has been described as a neurometabolic disorder manifesting a broad range of impairment in mental and motor development. Although hydroxyglutaric acid was excreted in high amounts in the urine of all four patients described herein, no significant neurologic abnormalities were evident. This unusual combination of characteristic skeletal and metabolic abnormalities has rarely been reported. Thus, our report will facilitate the recognition of this distinctive entity, and we suggest that a urine organic acid screening be obtained in patients who present with generalized enchondromatosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.