93 resultados para Monte Carlo.
Resumo:
Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]
Resumo:
Recent experiments showed that the linear double-stranded DNA in bacteriophage capsids is both highly knotted and neatly structured. What is the physical basis of this organization? Here we show evidence from stochastic simulation techniques that suggests that a key element is the tendency of contacting DNA strands to order, as in cholesteric liquid crystals. This interaction favors their preferential juxtaposition at a small twist angle, thus promoting an approximately nematic (and apolar) local order. The ordering effect dramatically impacts the geometry and topology of DNA inside phages. Accounting for this local potential allows us to reproduce the main experimental data on DNA organization in phages, including the cryo-EM observations and detailed features of the spectrum of DNA knots formed inside viral capsids. The DNA knots we observe are strongly delocalized and, intriguingly, this is shown not to interfere with genome ejection out of the phage.
Resumo:
Using Monte Carlo simulations and reanalyzing the data of a validation study of the AEIM emotional intelligence test, we demonstrated that an atheoretical approach and the use of weak statistical procedures can result in biased validity estimates. These procedures included stepwise regression-and the general case of failing to include important theoretical controls-extreme scores analysis, and ignoring heteroscedasticity as well as measurement error. The authors of the AEIM test responded by offering more complete information about their analyses, allowing us to further examine the perils of ignoring theory and correct statistical procedures. In this paper we show with extended analyses that the AEIM test is invalid.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
The optimization of the extremity dosimetry of medical staff in nuclear medicine was the aim of the Work Package 4 (WP4) of the ORAMED project, a Collaborative Project (2008-2011) supported by the European Commission within its 7th Framework Programme. Hand doses and dose distributions across the hands of medical staff working in nuclear medicine departments were evaluated through an extensive measurement program involving 32 hospitals in Europe and 139 monitored workers. The study included the most frequently used radionuclides, (99m)Tc- and (18)F-labelled radiopharmaceuticals for diagnostic and (90)Y-labelled Zevalin (R) and DOTATOC for therapy. Furthermore, Monte Carlo simulations were performed in different predefined scenarios to evaluate separately the efficacy of different radiation protection measures by comparing hand dose distributions according to various parameters. The present work gives recommendations based on results obtained with both measurements and simulations. This results in nine practical recommendations regarding the positioning of the dosemeters for an appropriate skin dose monitoring and the best protection means to reduce the personnel exposure.
Resumo:
Gel electrophoresis can be used to separate nicked circular DNA molecules of equal length but forming different knot types. At low electric fields, complex knots drift faster than simpler knots. However, at high electric field the opposite is the case and simpler knots migrate faster than more complex knots. Using Monte Carlo simulations we investigate the reasons of this reversal of relative order of electrophoretic mobility of DNA molecules forming different knot types. We observe that at high electric fields the simulated knotted molecules tend to hang over the gel fibres and require passing over a substantial energy barrier to slip over the impeding gel fibre. At low electric field the interactions of drifting molecules with the gel fibres are weak and there are no significant energy barriers that oppose the detachment of knotted molecules from transverse gel fibres.
Resumo:
PURPOSE: To assess how different diagnostic decision aids perform in terms of sensitivity, specificity, and harm. METHODS: Four diagnostic decision aids were compared, as applied to a simulated patient population: a findings-based algorithm following a linear or branched pathway, a serial threshold-based strategy, and a parallel threshold-based strategy. Headache in immune-compromised HIV patients in a developing country was used as an example. Diagnoses included cryptococcal meningitis, cerebral toxoplasmosis, tuberculous meningitis, bacterial meningitis, and malaria. Data were derived from literature and expert opinion. Diagnostic strategies' validity was assessed in terms of sensitivity, specificity, and harm related to mortality and morbidity. Sensitivity analyses and Monte Carlo simulation were performed. RESULTS: The parallel threshold-based approach led to a sensitivity of 92% and a specificity of 65%. Sensitivities of the serial threshold-based approach and the branched and linear algorithms were 47%, 47%, and 74%, respectively, and the specificities were 85%, 95%, and 96%. The parallel threshold-based approach resulted in the least harm, with the serial threshold-based approach, the branched algorithm, and the linear algorithm being associated with 1.56-, 1.44-, and 1.17-times higher harm, respectively. Findings were corroborated by sensitivity and Monte Carlo analyses. CONCLUSION: A threshold-based diagnostic approach is designed to find the optimal trade-off that minimizes expected harm, enhancing sensitivity and lowering specificity when appropriate, as in the given example of a symptom pointing to several life-threatening diseases. Findings-based algorithms, in contrast, solely consider clinical observations. A parallel workup, as opposed to a serial workup, additionally allows for all potential diseases to be reviewed, further reducing false negatives. The parallel threshold-based approach might, however, not be as good in other disease settings.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
We present a Bayesian approach for estimating the relative frequencies of multi-single nucleotide polymorphism (SNP) haplotypes in populations of the malaria parasite Plasmodium falciparum by using microarray SNP data from human blood samples. Each sample comes from a malaria patient and contains one or several parasite clones that may genetically differ. Samples containing multiple parasite clones with different genetic markers pose a special challenge. The situation is comparable with a polyploid organism. The data from each blood sample indicates whether the parasites in the blood carry a mutant or a wildtype allele at various selected genomic positions. If both mutant and wildtype alleles are detected at a given position in a multiply infected sample, the data indicates the presence of both alleles, but the ratio is unknown. Thus, the data only partially reveals which specific combinations of genetic markers (i.e. haplotypes across the examined SNPs) occur in distinct parasite clones. In addition, SNP data may contain errors at non-negligible rates. We use a multinomial mixture model with partially missing observations to represent this data and a Markov chain Monte Carlo method to estimate the haplotype frequencies in a population. Our approach addresses both challenges, multiple infections and data errors.
Resumo:
Abstract This paper shows how to calculate recursively the moments of the accumulated and discounted value of cash flows when the instantaneous rates of return follow a conditional ARMA process with normally distributed innovations. We investigate various moment based approaches to approximate the distribution of the accumulated value of cash flows and we assess their performance through stochastic Monte-Carlo simulations. We discuss the potential use in insurance and especially in the context of Asset-Liability Management of pension funds.
Resumo:
Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.