144 resultados para MOLECULAR JUNCTIONS
Resumo:
We have previously reported that in tumorigenic pancreatic beta-cells, calcitriol exerts a potent antitumorigenic effect by inducing apoptosis, cell growth inhibition, and reduction of solid beta-cell tumors. Here we have studied the molecular pathways involved in the antineoplastic activity of calcitriol on mouse insulinoma beta TC(3) cells, mouse insulinoma beta TC expressing or not expressing the oncogene p53, and beta TC-tet cells overexpressing or not the antiapoptotic gene Bcl2. Our results indicate that calcitriol-induced apoptosis was dependent on the function of p53 and was associated with a biphasic increase in protein levels of transcription factor nuclear factor-kappa B. Calcitriol decreased cell viability by about 40% in p53-retaining beta TC and in beta TC(3) cells; in contrast, beta TC p53(-/-) cells were only minimally affected. Calcitriol-induced cell death was regulated by members of the Bcl-2 family of apoptosis regulatory proteins, as shown by calcitriol-induced up-regulation of proapoptotic Bax and Bak and the lack of calcitriol-induced cytotoxicity in Bcl-2-overexpressing insulinoma cells. Moreover, calcitriol-mediated arrest of beta TC(3) cells in the G(1) phase of the cell cycle was associated with the abnormal expression of p21 and G(2)/M-specific cyclin B2 genes and involved the DNA damage-inducible factor GADD45. Finally, in beta TC(3) cells, calcitriol modulated the expression of IGF-I and IGF-II genes. In conclusion, these findings contribute to the understanding of the antitumorigenic effects of calcitriol on tumorigenic pancreatic beta-cells and further support the rationale of its utilization in the treatment of patients with malignant insulinomas.
Resumo:
Recent progress in the experimental determination of protein structures allow to understand, at a very detailed level, the molecular recognition mechanisms that are at the basis of the living matter. This level of understanding makes it possible to design rational therapeutic approaches, in which effectors molecules are adapted or created de novo to perform a given function. An example of such an approach is drug design, were small inhibitory molecules are designed using in silico simulations and tested in vitro. In this article, we present a similar approach to rationally optimize the sequence of killer T lymphocytes receptors to make them more efficient against melanoma cells. The architecture of this translational research project is presented together with its implications both at the level of basic research as well as in the clinics.
Resumo:
Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in FBLN4 or FBLN5. Recently, LTBP4 mutations have been implicated in a similar phenotype. Studying FBLN4, FBLN5, and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBLN5 mutations in two probands, whereas nine probands harbored biallelic mutations in LTBP4. FBLN5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastrointestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor-beta (TGFβ) activity. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.Arg1377Alafs(*) 27) showed reduced colocalization with fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFβ activity. We conclude that LTBP4 mutations cause disease through both loss of function and gain of function mechanisms.
Resumo:
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Resumo:
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Resumo:
Among the PAH class of compounds, high molecular weight PAH are now considered as relevant cancer inducers, but not all of them have the same biological activity. However, their analysis is difficult, mainly due to the presence of numerous isomers and due to their low volatility. Retention indices (Ri) for 13 dibenzopyrenes and homologues were determined by high-resolution capillary gas chromatography (GC) with four different stationary phases: a 5% phenyl-substituted methylpolysiloxane column (DB-5 ms), a 35% phenyl-substituted methylpolysiloxane column (BPX-35), a 50% phenyl-substituted methylpolysiloxane column (BPX-50), and a 35% trifluoropropylmethyl polysiloxane stationary phase (Rtx-200). Correlations for retention on each phase were investigated by using 8 independent molecular descriptors. Ri has been shown to be linearly correlated to PAH volume, polarisability alpha, Hückel-pi energy on the four examined columns. Ionisation potential Ip is a fourth variable which improves the regression model for DB-5ms, BPX-35, and BPX-50 column. Correlation coefficients ranging from r2 = 0.935 to r2 = 0.952 are then observed. Application of these indices to the identification and quantification of PAH with MW 302 in certified diesel particulate matter SRM 1650a is presented and discussed. [Authors]
Resumo:
The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.
Resumo:
PURPOSE: To study phenotype-genotype correlation in patients who have retinoma, which is a benign tumor resembling the post irradiation regression pattern of retinoblastoma (RB). METHODS: We selected patients who had retinoma and positive family history for RB and patients who had retinoma in one eye and either retinoma or RB in the other eye. The study included 22 patients with available DNA: 18 from 11 families and four sporadic cases. DNA was extracted from peripheral blood leukocytes. The RB1 gene was screened by DHPLC and direct sequencing of the promoter and all the exons. RESULTS: We identified 17 occurrences of 11 distinct germline mutations in two sporadic and in 15 familial cases (nine families). The 11 identified mutations were located in exons 1, 10,11,13,14, and 19 to 23. Four of the identified mutations were not previously reported, including g.64407delT, g.153236A>T, g.156743delTCTG, and g.162078delA. Eight out the 11 mutations were truncating and three were nontruncating (missense). There was no correlation between the type of mutation and the number of tumor foci per eye (RB or retinomas). Highly heterogeneous intrafamilial expressivity was observed. CONCLUSIONS: To our knowledge, this study is the largest series of mutations of consecutive retinoma patients. The present data suggest that the type of inherited mutations underlying retinoma is undistinguishable from RB related ones, i.e., largely dominated by truncating mutants. This finding is in contrast with the RB1 genotypic spectrum of mutations associated with low-penetrance RB, i.e., nontruncating mutants. The molecular mechanism underlying low-penetrance and attenuated expressivity (retinomas) appeared to be distinct.
Resumo:
Hailey-Hailey disease (HHD) is an autosomal dominant disorder characterized by suprabasal cutaneous cell separation (acantholysis) leading to the development of erosive and oozing skin lesion. Micro RNAs (miRNAs) are endogenous post-transcriptional modulators of gene expression with critical functions in health and disease. Here, we evaluated whether the expression of specific miRNAs may play a role in the pathogenesis of HHD. Here, we report that miRNAs are expressed in a non-random manner in Hailey-Hailey patients. miR-125b appeared a promising candidate for playing a role in HHD manifestation. Both Notch1 and p63 are part of a regulatory signalling whose function is essential for the control of keratinocyte proliferation and differentiation and of note, the expression of both Notch1 and p63 is downregulated in HHD-derived keratinocytes. We found that both Notch1 and p63 expression is strongly suppressed by miR-125b expression. Additionally, we found that miR-125b expression is increased by an oxidative stress-dependent mechanism. Our data suggest that oxidative stress-mediated induction of miR-125b plays a specific role in the pathogenesis of HHD by regulating the expression of factors playing an important role in keratinocyte proliferation and differentiation.
Resumo:
Background: The purpose of the work reported here is to test reliable molecular profiles using routinely processed formalin-fixed paraffin-embedded (FFPE) tissues from participants of the clinical trial BIG 1-98 with a median follow-up of 60 months. Methods: RNA from fresh frozen (FF) and FFPE tumor samples of 82 patients were used for quality control, and independent FFPE tissues of 342 postmenopausal participants of BIG 1-98 with ER-positive cancer were analyzed by measuring prospectively selected genes and computing scores representing the functions of the estrogen receptor (eight genes, ER_8), the progesterone receptor (five genes, PGR_5), Her2 (two genes, HER2_2), and proliferation (ten genes, PRO_10) by quantitative reverse transcription PCR (qRT-PCR) on TaqMan Low Density Arrays. Molecular scores were computed for each category and ER_8, PGR_5, HER2_2, and PRO_10 scores were combined into a RISK_25 score. Results: Pearson correlation coefficients between FF- and FFPE-derived scores were at least 0.94 and high concordance was observed between molecular scores and immunohistochemical data. The HER2_2, PGR_ 5, PRO_10 and RISK_25 scores were significant predictors of disease free-survival (DFS) in univariate Cox proportional hazard regression. PRO_10 and RISK_25 scores predicted DFS in patients with histological grade II breast cancer and in lymph node positive disease. The PRO_10 and PGR_ 5 scores were independent predictors of DFS in multivariate Cox regression models incorporating clinical risk indicators; PRO_10 outperformed Ki-67 labeling index in multivariate Cox proportional hazard analyses. Conclusions: Scores representing the endocrine responsiveness and proliferation status of breast cancers were developed from gene expression analyses based on RNA derived from FFPE tissues. The validation of the molecular scores with tumor samples of participants of the BIG 1-98 trial demonstrates that such scores can serve as independent prognostic factors to estimate disease free survival (DFS) in postmenopausal patients with estrogen receptor positive breast cancer.
Resumo:
The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n = 12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32 +/- 8 HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in vivo.