164 resultados para Load estimation
Resumo:
Dietary acid load from Western diets may be a risk factor for osteoporosis. It can be estimated by net endogenous acid production (NEAP). No data currently exists for NEAP estimates and bone indices in the very elderly (i.e. > or = 75 y). The aim of this study was to determine the association between NEAP estimates by using the potential renal acid load (PRAL) equation and quantitative bone ultrasound (QUS) measurements at the heel [broadband ultrasound attenuation (BUA)] in Caucasian women. We assessed NEAP and QUS in 401 very elderly Swiss ambulatory women. We evaluated dietary intake and NEAP estimates with a validated FFQ. QUS was measured using Achilles (Lunar). We identified 2 subgroups: 256 women (80.6 y +/- 3; BUA, 96.8 dB/MHz) with a fracture history and the remaining 145 (79.9 y SD 2.9; BUA, 101.7 dB/MHz) without. Women who reported having suffered a fracture had lower BUA (P < 0.001) than nonfractured women but did not differ in nutrient intakes and NEAP. Lower NEAP (P = 0.023) and higher potassium intake (P = 0.033) were correlated with higher BUA, which remained significant even after adjustment for age, BMI, and osteoporosis treatment. BUA was positively correlated with calcium (P = 0.016) and BMI (P < 0.001). Women who reported no fractures had no significant correlations between nutrient intake, NEAP, and BUA. Low nutritional acid load was correlated with higher BUA in very elderly women with a fracture history. Although relatively weak compared with age and BMI, this association was significant and may be an important additional risk factor that might be particularly relevant in frail patients with an already high fracture risk.
Resumo:
Amino acids stimulate the release of glucagon and insulin. To assess the role of aminogenic hyperglucagonemia, we have studied, in healthy young males, the effects of basal (less than 100 pg/ml) and high (200-400 pg/ml) plasma glucagon concentrations on amino acid metabolism during intravenous infusion (0.5 g.h-1.4 h) of a mixture of 15 amino acids. Basal plasma glucagon concentrations were obtained by infusion of somatostatin (0.5 mg/h) plus glucagon (0.25 ng.kg-1.min-1) and high plasma glucagon concentrations by infusion of somatostatin plus glucagon (3.0 ng.kg-1.min-1) or by infusion of amino acids alone. All studies were performed under conditions of euglycemic (83-91 mg/dl) hyperinsulinemia (50-80 microU/ml). Hyperglucagonemia significantly increased 1) net amino acid transport from the extracellular into the intracellular space (by approximately 4%), 2) net degradation of amino acids entering the intracellular space (by approximately 40%), and 3) conversion of degraded amino acids into glucose from 0-10% (basal glucagon) to 70-100% (high glucagon). Hyperglucagonemia did not affect the amount of amino acids excreted in the urine (approximately 4%). We conclude that glucagon plays an important role in the disposition of amino acids by increasing their inward transport, their degradation, and their conversion into glucose.
Resumo:
OBJECTIVES: (1) To evaluate the changes in surface roughness and gloss after simulated toothbrushing of 9 composite materials and 2 ceramic materials in relation to brushing time and load in vitro; (2) to assess the relationship between surface gloss and surface roughness. METHODS: Eight flat specimens of composite materials (microfilled: Adoro, Filtek Supreme, Heliomolar; microhybrid: Four Seasons, Tetric EvoCeram; hybrid: Compoglass F, Targis, Tetric Ceram; macrohybrid: Grandio), two ceramic materials (IPS d.SIGN and IPS Empress polished) were fabricated according to the manufacturer's instructions and optimally polished with up to 4000 grit SiC. The specimens were subjected to a toothbrushing (TB) simulation device (Willytec) with rotating movements, toothpaste slurry and at three different loads (100g/250g/350g). At hourly intervals from 1h to 10h TB, mean surface roughness Ra was measured with an optical sensor and the surface gloss (Gl) with a glossmeter. Statistical analysis was performed for log-transformed Ra data applying two-way ANOVA to evaluate the interaction between load and material and load and brushing time. RESULTS: There was a significant interaction between material and load as well as between load and brushing time (p<0.0001). The microhybrid and hybrid materials demonstrated more surface deterioration with higher loads, whereas with the microfilled resins Heliomolar and Adoro it was vice versa. For ceramic materials, no or little deterioration was observed over time and independent of the load. The ceramic materials and 3 of the composite materials (roughness) showed no further deterioration after 5h of toothbrushing. Mean surface gloss was the parameter which discriminated best between the materials, followed by mean surface roughness Ra. There was a strong correlation between surface gloss and surface roughness for all the materials except the ceramics. The evaluation of the deterioration curves of individual specimens revealed a more or less synchronous course suspecting hinting specific external conditions and not showing the true variability in relation to the tested material. SIGNIFICANCE: The surface roughness and gloss of dental materials changes with brushing time and load and thus results in different material rankings. Apart from Grandio, the hybrid composite resins were more prone to surface changes than microfilled composites. The deterioration potential of a composite material can be quickly assessed by measuring surface gloss. For this purpose, a brushing time of 10h (=72,000 strokes) is needed. In further comparative studies, specimens of different materials should be tested in one series to estimate the true variability.
Resumo:
BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.
Resumo:
To investigate the effect of age and change in body composition on the increase in energy expenditure consecutive to the ingestion of a 75-g glucose load, respiratory exchange measurements were performed on 24 subjects, 12 elderly (mean +/- SEM, 73 +/- 1 yr) and 12 young (25 +/- 1 yr). The body weight was comparable, 62 +/- 2 kg in the elderly group vs 61 +/- 3 in the young, but the body fat content of the elderly group was significantly greater than that of the young (29 +/- 2% vs 19 +/- 2%, p less than 0.001). The elderly group presented a slight glucose intolerance according to the World Health Organization (WHO) criteria, with a 120-min plasma glucose of 149 +/- 9 mg/dl (p less than 0.005 vs young). The postabsorptive resting energy expenditure (REE) was 0.83 +/- 0.03 kcal/min in the elderly group vs 0.98 +/- 0.04 in the young (p less than 0.02); this decrease of 15% was mainly related to the decrease in fat free mass (FFM) in the elderly group, which averaged 14%. The difference was not significant when REE was expressed per kg FFM. The glucose-induced thermogenesis (GIT) expressed as percent of energy content of the load was 6.2 +/- 0.6% in the elderly group and 8.9 +/- 0.9% in the young (p less than 0.05). It is concluded that the glucose-induced thermogenesis is decreased in elderly subjects. However, when expressed per kg FFM, the increment in energy expenditure (EE), in response to the glucose load, is not different in elderly subjects, suggesting that the decrease of thermogenesis may be attributed to the age-related decrease in FFM.
Resumo:
BACKGROUND: To test the inflammatory origin of cardiovascular disease, as opposed to its origin in western lifestyle. Population-based assessment of the prevalences of cardiovascular risk factors and cardiovascular disease in an inflammation-prone African population, including electrocardiography and ankle-arm index measurement. Comparison with known prevalences in American and European societies. METHODOLOGY/PRINCIPAL FINDINGS: Traditional population in rural Ghana, characterised by adverse environmental conditions and a high infectious load. Population-based sample of 924 individuals aged 50 years and older. Median values for cardiovascular risk factors, including waist circumference, BMI, blood pressure, and markers of glucose and lipid metabolism and inflammation. Prevalence of myocardial infarction detected by electrocardiography and prevalence of peripheral arterial disease detected by ankle-arm index. When compared to western societies, we found the Ghanaians to have more proinflammatory profiles and less cardiovascular risk factors, including obesity, dysglycaemia, dyslipidaemia, and hypertension. Prevalences of cardiovascular disease were also lower. Definite myocardial infarction was present in 1.2% (95%CI: 0.6 to 2.4%). Peripheral arterial disease was present in 2.8% (95%CI: 1.9 to 4.1%). CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that for the pathogenesis of cardiovascular disease inflammatory processes alone do not suffice and additional factors, probably lifestyle-related, are mandatory.
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.