184 resultados para Learning conceptions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents and discusses the use of Bayesian procedures - introduced through the use of Bayesian networks in Part I of this series of papers - for 'learning' probabilities from data. The discussion will relate to a set of real data on characteristics of black toners commonly used in printing and copying devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to address uncertainties related to particular propositions of interest (e.g., whether or not a sample originates from a particular source). The conceptual tenets of the proposed methodologies are presented along with aspects of their practical implementation using currently available Bayesian network software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME En faisant référence à la notion de préjugé idéologique, ce travail s'intéresse à la manifestation d'une croyance qui oppose la culture à la nature lors de la classification et l'évaluation des individus. Nous proposons que cette croyance se manifeste par l'attribution de traits spécifiques aux groupes (traits culturels et naturels) et que sa fonction est de justifier la suprématie de l'homme bourgeois blanc occidental sur autrui. Ainsi, nous abordons la perception de plusieurs groupes ethniques de la part d'individus suisses. Notre travail est organisé en trois parties. La première partie présente une étude exploratoire dont l'objectif est de cerner les phénomènes étudiés. Les résultats mettent en évidence que l'attribution de traits culturels .positifs aux groupes ethniques est relativement indépendante de l'attribution de traits naturels positifs àceux-ci: les groupes perçus comme les plus culturels sont également perçus comme les plus naturels. De plus, l'attribution de traits naturels positifs semble sous-tendre une attitude favorable envers les groupes. La deuxième partie reprend les critères qu'identifient les notions de culture et de nature. Les études 2, 3 et 4 ont mis en évidence qu'il y au continuum dans la signification des traits par rapport à .l'être humain et à l'animal. Cela nous a amené sélectionner des traits attribués uniquement à l' être humain (culture) et des traits attribués davantage à l' animal qu'à l'être humain (nature). Les études 5 et 6 de la troisième partie montrent que, lorsqu'il est question de groupes ethniques, l'endogroupe dominant et ses alliés sont associés à la culture positive, alors que des exogroupes spécifiques sont associés à la nature positive (des exogroupes sujets au paternalisme). L'étude 7 confirme les résultats concernant l'endogroupe dominant et ses alliés avec des groupes fictifs et il met en évidence que les membres du groupe dominant utilisent la notion de culture positive pour hiérarchiser les groupes. L'attribution de nature positive n'est pas prise en compte pour hiérarchiser des groupes fictifs. Pour conclure, les études montrent qu'il n'y a pas d'opposition entre la culture et la nature (positives): les membres du groupe ethnique dominant utilisent la notion de culture pour classifier et évaluer les individus sur une hiérarchie de valeurs. La notion de nature n'est pas utilisée pour hiérarchiser les groupes, mais elle identifie des exogroupes spécifiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.