147 resultados para LATERAL FORCE
Resumo:
PURPOSE: This study aimed at examining the influence of different playing surfaces on in-shoe loading patterns in each foot (back and front) separately during the first serve in tennis. METHODS: Ten competitive tennis players completed randomly five first (ie, flat) serves on two different playing surfaces: clay vs GreenSet. Maximum and mean force, peak and mean pressure, mean area, contact area and relative load were recorded by Pedar insoles divided into 9 areas for analysis. RESULTS: Mean pressure was significantly lower (123 ± 30 vs 98 ± 26 kPa; -18.5%; P < .05) on clay than on GreenSet when examining the entire back foot. GreenSet induced higher mean pressures under the medial forefoot, lateral forefoot and hallux of the back foot (+9.9%, +3.5% and +15.9%, respectively; both P < .01) in conjunction with a trend toward higher maximal forces in the back hallux (+15.1%, P = .08). Peak pressures recorded under the central and lateral forefoot (+21.8% and +25.1%; P < .05) of the front foot but also the mean area values measured on the back medial and lateral midfoot were higher (P < .05) on clay. No significant interaction between foot region and playing surface on relative load was found. CONCLUSIONS: It is suggested that in-shoe loading parameters characterizing the first serve in tennis are adjusted according to the ground type surface. A lesser asymmetry in peak (P < .01) and mean (P < .001) pressures between the two feet was found on clay, suggesting a greater need for stability on this surface.
Resumo:
The World Health Organization fracture risk assessment tool, FRAX(®), is an advance in clinical care that can assist in clinical decision-making. However, with increasing clinical utilization, numerous questions have arisen regarding how to best estimate fracture risk in an individual patient. Recognizing the need to assist clinicians in optimal use of FRAX(®), the International Osteoporosis Foundation (IOF) in conjunction with the International Society for Clinical Densitometry (ISCD) assembled an international panel of experts that ultimately developed joint Official Positions of the ISCD and IOF advising clinicians regarding FRAX(®) usage. As part of the process, the charge of the FRAX(®) Clinical Task Force was to review and synthesize data surrounding a number of recognized clinical risk factors including rheumatoid arthritis, smoking, alcohol, prior fracture, falls, bone turnover markers and glucocorticoid use. This synthesis was presented to the expert panel and constitutes the data on which the subsequent Official Positions are predicated. A summary of the Clinical Task Force composition and charge is presented here.
Resumo:
CONTEXT: A passive knee-extension test has been shown to be a reliable method of assessing hamstring tightness, but this method does not take into account the potential effect of gravity on the tested leg. OBJECTIVE: To compare an original passive knee-extension test with 2 adapted methods including gravity's effect on the lower leg. DESIGN: Repeated measures. SETTING: Laboratory. PARTICIPANTS: 20 young track and field athletes (16.6 ± 1.6 y, 177.6 ± 9.2 cm, 75.9 ± 24.8 kg). INTERVENTION: Each subject was tested in a randomized order with 3 different methods: In the original one (M1), passive knee angle was measured with a standard force of 68.7 N (7 kg) applied proximal to the lateral malleolus. The second (M2) and third (M3) methods took into account the relative lower-leg weight (measured respectively by handheld dynamometer and anthropometrical table) to individualize the force applied to assess passive knee angle. MAIN OUTCOME MEASURES: Passive knee angles measured with video-analysis software. RESULTS: No difference in mean individualized applied force was found between M2 and M3, so the authors assessed passive knee angle only with M2. The mean knee angle was different between M1 and M2 (68.8 ± 12.4 vs 73.1 ± 10.6, P < .001). Knee angles in M1 and M2 were correlated (r = .93, P < .001). CONCLUSIONS: Differences in knee angle were found between the original passive knee-extension test and a method with gravity correction. M2 is an improved version of the original method (M1) since it minimizes the effect of gravity. Therefore, we recommend using it rather than M1.
Resumo:
Les fractures du condyle externe de l'enfant sont un traumatisme relativement fréquent qui survient le plus souvent chez l'enfant entre 5 et 15 ans. Elles sont classées en 3 grades : le grade 1 sans déplacement qui peuvent être traitées conservativement et les grades 2 (déplacées) et 3 (disloquées) qui nécessitent une prise en charge chirurgicale par réduction ouverte et embrochage. Le traitement traditionnel de ces fractures consistent en la mise en place de broches/vis métalliques qui doivent être retirées quelques semaines plus tard lors d'une seconde intervention. Depuis les années 90, des matériaux bio-résorbables à base d'acide polyglycoliques sont apparus en chirurgie orthopédique et traumatologique. En raison de la survenue de complications telles que réactions inflammatoires, formation de séromes ou ostéolyse, l'utilisation du matériel conventionnel a été préférée. Cependant, depuis quelques années, de nouveaux matériaux en acide polylactique sont apparus sur le marché. La période de résorption étant beaucoup plus lente, ces matériaux induisent des réactions beaucoup plus faibles, sans conséquences cliniques relevées jusqu'à présent. Chez l'adulte, de récentes études ont prouvés l'efficacité et l'absence d'effets secondaires liés à ces matériaux. Par contre, chez l'enfant, peu d'études à moyen terme ont été réalisées et l'impact sur l'os en croissance est peu connu, même si pour l'heure aucune conséquence clinique n'a été relevée. Dans le cadre de notre étude, nous avons comparé 2 groupes d'enfants traités pour des fractures du condyle externe du coude. Le premier groupe traité par du matériel conventionnel et le second par matériel résorbable. Les enfants ont tous étés suivis de manière très étroite durant la première année et la récupération clinique est similaire pour les 2 groupes. A 4 ans du traumatisme, les résultats fonctionnels sont identiques pour les 2 groupes et aucune complication liée au matériel résorbable n'a été mise en évidence. Par ailleurs, à 1 et 4 ans, les clichés radiologiques montrent l'absence de lésions liées au matériel résorbable. En conclusion, dans le cadre de notre travail nous avons pu montrer l'efficacité des matériaux résorbables dans la prise en charge des fractures du condyle externe du coude chez l'enfant. Ces matériaux permettent d'optimiser la prise en charge de ce type de fracture en prévenant un risque opératoire et anesthésique liés à une seconde intervention nécessaire au retrait du matériel d'ostéosynthèse conventionnel. Par ailleurs le coût lié à la prise en charge globale de ce type de fracture est moindre lors de l'utilisation de matériel résorbable.
Resumo:
This study aimed to examine the effects of a 5-h hilly run on ankle plantar (PF) and dorsal flexor (DF) force and fatigability. It was hypothesised that DF fatigue/fatigability would be greater than PF fatigue/fatigability. Eight male trail long distance runners (42.5 ± 5.9 years) were tested for ankle PF and DF maximal voluntary isokinetic contraction strength and fatigue resistance tests (percent decrement score), maximal voluntary and electrically evoked isometric contraction strength before and after the run. Maximal EMG root mean square (RMS(max)) and mean power frequency (MPF) values of the tibialis anterior (TA), gastrocnemius lateralis (GL) and soleus (SOL) EMG activity were calculated. The peak torque of the potentiated high- and low-frequency doublets and the ratio of paired stimulation peak torques at 10 Hz over 100 Hz (Db10:100) were analysed for PF. Maximal voluntary isometric contraction strength of PF decreased from pre- to post-run (-17.0 ± 6.2%; P < 0.05), but no significant decrease was evident for DF (-7.9 ± 6.2%). Maximal voluntary isokinetic contraction strength and fatigue resistance remained unchanged for both PF and DF. RMS(max) SOL during maximal voluntary isometric contraction and RMS(max) TA during maximal voluntary isokinetic contraction were decreased (P < 0.05) after the run. For MPF, a significant decrease for TA (P < 0.05) was found and the ratio Db10:100 decreased for PF (-6.5 ± 6.0%; P < 0.05). In conclusion, significant isometric strength loss was only detected for PF after a 5-h hilly run and was partly due to low-frequency fatigue. This study contradicted the hypothesis that neuromuscular alterations due to prolonged hilly running are predominant for DF.
Resumo:
The free extended lateral arm flap (ELAF) has gained increasing popularity thank to its slimness and versatility, longer neurovascular pedicle, and greater flap size when compared with the original flap design. The aim of this study was to assess the donor-site morbidity associated with this extended procedure. A retrospective study of 25 consecutive patients analyzing postoperative complications using a visual analogue scale questionnaire revealed high patients satisfaction and negligible donor-site morbidity of the ELAF. Scar visibility was the commonest negative outcome. Impaired mobility of the elbow had the highest correlation with patient dissatisfaction. Sensory deficits or paresthetic disorders did not affect patient satisfaction. The extension of the lateral arm flap and positioning over the lateral humeral epicondyle is a safe and well-accepted procedure with minimal donor-site morbidity. To optimize outcomes, a maximal flap width of 6 or 7 cm and intensive postoperative mobilization therapy is advisable.
Resumo:
BACKGROUND: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). METHODS/PRINCIPAL FINDINGS: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated. CONCLUSION/SIGNIFICANCE: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole. TRIAL REGISTRATION: Clinicaltrials.gov NCT00690118.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.
Resumo:
BACKGROUND: Outcome following foot and ankle surgery can be assessed by disease- and region-specific scores. Many scoring systems exist, making comparison among studies difficult. The present study focused on outcome measures for a common foot and ankle abnormality and compared the results obtained by 2 disease-specific and 2 body region-specific scores. METHODS: We reviewed 41 patients who underwent lateral ankle ligament reconstruction. Four outcome scales were administered simultaneously: the Cumberland Ankle Instability Tool (CAIT) and the Chronic Ankle Instability Scale (CAIS), which are disease specific, and the American Orthopedic Foot & Ankle Society (AOFAS) hindfoot scale and the Foot and Ankle Ability Measure (FAAM), which are both body region-specific. The degree of correlation between scores was assessed by Pearson's correlation coefficient. Nonparametric tests, the Kruskal-Wallis and the Mann-Whitney test for pairwise comparison of the scores, were performed. RESULTS: A significant difference (P < .005) was observed between the CAIS and the AOFAS score (P = .0002), between the CAIS and the FAAM 1 (P = .0001), and between the CAIT and the AOFAS score (P = .0003). CONCLUSIONS: This study compared the performances of 4 disease- and body region-specific scoring systems. We demonstrated a correlation between the 4 administered scoring systems and notable differences between the results given by each of them. Disease-specific scores appeared more accurate than body region-specific scores. A strong correlation between the AOFAS score and the other scales was observed. The FAAM seemed a good compromise because it offered the possibility to evaluate the patient according to his or her own functional demand. CLINICAL RELEVANCE: The present study contributes to the development of more critical and accurate outcome assesment methods in foot and ankle surgery.
Resumo:
OBJECTIVES: This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. DESIGN: Within-participants repeated measures. METHODS: Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. RESULTS: Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. CONCLUSIONS: The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading.