77 resultados para King Motor Car Company
Resumo:
Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.
Resumo:
Spondyloepimetaphyseal dysplasia with joint laxity, leptodactylic type (lepto-SEMDJL, aka SEMDJL, Hall type), is an autosomal dominant skeletal disorder that, in spite of being relatively common among skeletal dysplasias, has eluded molecular elucidation so far. We used whole-exome sequencing of five unrelated individuals with lepto-SEMDJL to identify mutations in KIF22 as the cause of this skeletal condition. Missense mutations affecting one of two adjacent amino acids in the motor domain of KIF22 were present in 20 familial cases from eight families and in 12 other sporadic cases. The skeletal and connective tissue phenotype produced by these specific mutations point to functions of KIF22 beyond those previously ascribed functions involving chromosome segregation. Although we have found Kif22 to be strongly upregulated at the growth plate, the precise pathogenetic mechanisms remain to be elucidated.
Resumo:
This research aims to provide a contribution towards understanding how and why certain people can display disobedience behaviors, to overcome unjust situations, and withstand persecutions deployed by authority. The paper presents a hermeneutic content analysis of the autobiographical speeches and texts of Gandhi, M. L. King and Mandela. Our results show that parents' value orientation, experience of injustice during childhood and exploration of alternative viewpoints during adolescence play a crucial role in structuring prosocial disobedience. Findings show also that social responsibility and ingroup communication are important conditions for facing persecutions without dropping original goals.
Resumo:
Background: The debate about a possible relationship between aerobic fitness and motor skills with cognitive development in children has recently re-emerged, because of the decrease in children's aerobic fitness and the concomitant pressure of schools to enhance cognitive performance. As the literature in young children is scarce, we examined the cross-sectional and longitudinal relationship of aerobic fitness and motor skills with spatial working memory and attention in preschool children.Methods: Data from 245 ethnically diverse preschool children (mean age: 5.2 (0.6) years, girls: 49.4%) analyzed at baseline and 9 months later. Assessments included aerobic fitness (20 m shuttle run) and motor skills with agility (obstacle course) and dynamic balance (balance beam). Cognitive parameters included spatial working memory (IDS) and attention (KHV-VK). All analyses were adjusted for age, sex, BMI, migration status, parental education, native language and linguistic region. Longitudinal analyses were additionally adjusted for the respective baseline value.Results: In the cross-sectional analysis, aerobic fitness was associated with better attention (r = 0.16, p = 0.03). A shorter time in the agility test was independently associated with a better performance both in working memory (r = -0.17, p = 0.01) and in attention (r = -0.20, p = 0.01). In the longitudinal analyses, baseline aerobic fitness was independently related to improvements in attention (r = 0.16, p = 0.03), while baseline dynamic balance was associated with improvements in working memory (r = 0.15, p = 0.04).Conclusions: In young children, higher baseline aerobic fitness and motor skills were related to a better spatial working memory and/or attention at baseline, and to some extent also to their future improvements over the following 9 months.
Resumo:
OBJECTIVE: To detect anatomical differences in areas related to motor processing between patients with motor conversion disorder (CD) and controls. METHODS: T1-weighted 3T brain MRI data of 15 patients suffering from motor CD (nine with hemiparesis and six with paraparesis) and 25 age- and gender-matched healthy volunteers were compared using voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) analysis. RESULTS: We report significant cortical thickness (VBCT) increases in the bilateral premotor cortex of hemiparetic patients relative to controls and a trend towards increased grey matter volume (VBM) in the same region. Regression analyses showed a non-significant positive correlation between cortical thickness changes and symptom severity as well as illness duration in CD patients. CONCLUSIONS: Cortical thickness increases in premotor cortical areas of patients with hemiparetic CD provide evidence for altered brain structure in a condition with presumed normal brain anatomy. These may either represent premorbid vulnerability or a plasticity phenomenon related to the disease with the trends towards correlations with clinical variables supporting the latter.
Resumo:
The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n = 18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110âeuro"150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150âeuro"200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.
Resumo:
Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p < 0.01). At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children.
Resumo:
Whether different brain networks are involved in generating unimanual responses to a simple visual stimulus presented in the ipsilateral versus contralateral hemifield remains a controversial issue. Visuo-motor routing was investigated with event-related functional magnetic resonance imaging (fMRI) using the Poffenberger reaction time task. A 2 hemifield x 2 response hand design generated the "crossed" and "uncrossed" conditions, describing the spatial relation between these factors. Both conditions, with responses executed by the left or right hand, showed a similar spatial pattern of activated areas, including striate and extrastriate areas bilaterally, SMA, and M1 contralateral to the responding hand. These results demonstrated that visual information is processed bilaterally in striate and extrastriate visual areas, even in the "uncrossed" condition. Additional analyses based on sorting data according to subjects' reaction times revealed differential crossed versus uncrossed activity only for the slowest trials, with response strength in infero-temporal cortices significantly correlating with crossed-uncrossed differences (CUD) in reaction times. Collectively, the data favor a parallel, distributed model of brain activation. The presence of interhemispheric interactions and its consequent bilateral activity is not determined by the crossed anatomic projections of the primary visual and motor pathways. Distinct visuo-motor networks need not be engaged to mediate behavioral responses for the crossed visual field/response hand condition. While anatomical connectivity heavily influences the spatial pattern of activated visuo-motor pathways, behavioral and functional parameters appear to also affect the strength and dynamics of responses within these pathways.
Resumo:
OBJECT: The aim of this study was to evaluate the long-term safety and efficacy of bilateral contemporaneous deep brain stimulation (DBS) in patients who have levodopa-responsive parkinsonism with untreatable motor fluctuations. Bilateral pallidotomy carries a high risk of corticobulbar and cognitive dysfunction. Deep brain stimulation offers new alternatives with major advantages such as reversibility of effects, minimal permanent lesions, and adaptability to individual needs, changes in medication, side effects, and evolution of the disease. METHODS: Patients in whom levodopa-responsive parkinsonism with untreatable severe motor fluctuations has been clinically diagnosed underwent bilateral pallidal magnetic resonance image-guided electrode implantation while receiving a local anesthetic. Pre- and postoperative evaluations at 3-month intervals included Unified Parkinson's Disease Rating Scale (UPDRS) scoring, Hoehn and Yahr staging, 24-hour self-assessments, and neuropsychological examinations. Six patients with a mean age of 55 years (mean 42-67 years), a mean duration of disease of 15.5 years (range 12-21 years), a mean "on/off' Hoehn and Yahr stage score of 3/4.2 (range 3-5), and a mean "off' time of 40% (range 20-50%) underwent bilateral contemporaneous pallidal DBS, with a minimum follow-up period lasting 24 months (range 24-30 months). The mean dose of levodopa in these patients could not be changed significantly after the procedure and pergolide was added after 12 months in five patients because of recurring fluctuations despite adjustments in stimulation parameters. All but two patients had no fluctuations until 9 months. Two of the patients reported barely perceptible fluctuations at 12 months and two at 15 months; however, two patients remain without fluctuations at 2 years. The mean improvements in the UPDRS motor score in the off time and the activities of daily living (ADL) score were more than 50%; the mean off time decreased from 40 to 10%, and the mean dyskinesia and complication of treatment scores were reduced to one-third until pergolide was introduced at 12 months. No significant improvement in "on" scores was observed. A slight worsening after 1 year was observed and three patients developed levodopa- and stimulation-resistant gait ignition failure and minimal fluctuations at 1 year. Side effects, which were controlled by modulation of stimulation, included dysarthria, dystonia, and confusion. CONCLUSIONS: Bilateral pallidal DBS is safe and efficient in patients who have levodopa-responsive parkinsonism with severe fluctuations. Major improvements in motor score, ADL score, and off time persisted beyond 2 years after the operation, but signs of decreased efficacy started to be seen after 12 months.
Resumo:
Résumé : Le positionnement correct du fuseau mitotique est crucial pour les divisions cellulaires asymétriques, car il gouverne le contrôle spatial de la division cellulaire et assure la ségrégation adéquate des déterminants cellulaires. Malgré leur importance, les mécanismes contrôlant le positionnement du fuseau mitotique sont encore mal compris. Chez l'embryon au stade une-cellule du nématode Caenorhabditis elegans, le fuseau mitotique est positionné de manière asymétrique durant l'anaphase grâce à l'action de générateurs de force situés au cortex cellulaire, et dont la nature était jusqu'alors indéterminée. Ces générateurs de force corticaux exercent une traction sur les microtubules astraux et sont dépendants de deux protéines Gα et de leurs protéines associées. Cette thèse traite de la nature de la machinerie responsable pour la génération des forces de tractions, ainsi que de son lien avec les protéines Gα et associées. Nous avons combiné des expériences de coupure par faisceau laser du fuseau mitotique avec le contrôle temporel de l'inactivation de gènes ou de l'exposition à des produits pharmacologiques. De cette manière, nous avons établi que la dynéine, un moteur se déplaçant vers l'extrémité négative des microtubules, ainsi que la dynamique des microtubules, sont toutes deux requises pour la génération efficace des forces de tractions. Nous avons démontré que les protéines Gα et leurs protéines associées GPR-1/2 et LIN-5 interagissent in vivo avec LIS-1, un composant du complexe de la dynéine. De plus, nous avons découvert que les protéines Gα, GPR-1/2 et LIN-5 promeuvent la présence du complexe de la dynéine au cortex cellulaire. Nos résultats suggèrent un mécanisme par lequel les protéines Gα permettent le recrutement cortical de GPR-1/2 et LIN-5, assurant ainsi la présence de la dynéine au cortex. Conjointement avec la dynamique des microtubules, ce mécanisme permet la génération des forces de tractions afin d'obtenir une division cellulaire correcte. Comme les mécanismes contrôlant le positionnement du fuseau mitotique et les divisions cellulaires asymétriques sont conservés au cours de l'évolution, nous espérons que les mécanismes élucidés par ce travail sont d'importance générale pour la génération de la diversité cellulaire durant le développement. De plus, ces mécanismes pourraient être applicables à d'autres divisions asymétriques, comme celle des cellules souches, dont le disfonctionnement peut entraîner la génération de cellules cancéreuses. Abstract : Proper spindle positioning is crucial for asymmetric cell division, because it controls spatial aspects of cell division and the correct inheritance of cell-fate determinants. However, the mechanisms governing spindle positioning remain incompletely understood. In the Caenorhabditis elegans one-cell stage embryo, the spindle becomes asymmetrically positioned during anaphase through the action of as-yet unidentified cortical force generators that pull on astral microtubules and that depend on two Gα proteins and associated proteins. This thesis addresses the nature of the force generation machinery and the link with the Gα and associated proteins. By performing spindle-severing experiments following temporally restricted gene inactivation and drug exposure, we established that microtubule dynamics and the minus-end directed motor dynein are both required for generating efficient pulling forces. We discovered that the Gα proteins and their associated proteins GPR-1/2 and LIN-5 interact in vivo with LIS-1, a component of the dynein complex. Moreover, we uncovered that LIN-5, GPR-1/2 and the Gα proteins promote the presence of the dynein complex at the cell cortex. Our findings suggest a mechanism by which the Gα proteins enable GPR-1/2 and LIN-5 recruitment to the cortex, thus ensuring the presence of cortical dynein. Together with microtubule dynamics, this allows pulling forces to be exerted and proper cell division to be achieved. Because the mechanisms of spindle positioning and asymmetric cell division are conserved across evolution, we expect the underlying mechanism uncovered here to be of broad significance for the generation of cell diversity during development. Moreover, this mechanism could be relevant for other asymmetric cell divisions, such as stem cell divisions, whose dysfunction may lead to the generation of cancer cells.
Resumo:
Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.
Resumo:
Introduction: Tourette syndrome (TS) implicates the disinhibition of the cortico-striatal-thalamic-cortical circuitry (CSTC). Previous studies used a volumetric approach to investigate this circuitry with inconsistent findings. Cortical thickness may represent a more reliable measure than volume due to the low variability in the cytoarchitectural structure of the grey matter. Methods: 66 magnetic resonance imaging scans were acquired from 34 TS (age range 10-25, mean 17.19±4.1) and 32 normal controls (NC) (age range 10-20, mean 16.33±3.56). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. Results: We report (1) significant cortical thinning in the fronto-parietal and somatosensory-motor cortices in TS relative to NC (p<0.05); (2) TS boys showed thinner cortex relative to TS girls in the fronto-parietal cortical regions (p<0.05); (3) significant decrease in the fronto-parietal mean cortical thickness in TS with age relative to NC and in the pre-central cortex in TS boys relative to TS girls; (4) significant negative correlations between tic severity and the somatosensory-motor cortical thickness. Conclusions: TS revealed important thinning in brain regions particularly involved in the somatosensory/motor bodily representations which may play an important role in tics. Our findings are in agreement with Leckman et al. (1991) hypothesis stating that facial tics would be associated with dysfunction in an orofacial subset of the motor circuit, eye blinking with the occulo-motor circuit, whereas lack of inhibition to a dysfunction in the prefrontal cortex. Gender and age differences may reflect differential etiological factors, which have significant clinical relevance in TS and should be considered in developing and using diagnostic and therapeutic interventions.