131 resultados para Job climate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Paleoclimatic data indicate that an abrupt climate change occurred at the Eocene-Oligocene (E-O) boundary affecting the distribution of tropical forests on Earth. The same period has seen the emergence of South-East (SE) Asia, caused by the collision of the Eurasian and Australian plates. How the combination of these climatic and geomorphological factors affected the spatio-temporal history of angiosperms is little known. This topic is investigated by using the worldwide sapindaceous clade as a case study. Methods Analyses of divergence time inference, diversification and biogeography (constrained by paleogeography) are applied to a combined plastid and nuclear DNA sequence data set. Biogeographical and diversification analyses are performed over a set of trees to take phylogenetic and dating uncertainty into account. Results are analysed in the context of past climatic fluctuations. Key Results An increase in the number of dispersal events at the E-O boundary is recorded, which intensified during the Miocene. This pattern is associated with a higher rate in the emergence of new genera. These results are discussed in light of the geomorphological importance of SE Asia, which acted as a tropical bridge allowing multiple contacts between areas and additional speciation across landmasses derived from Laurasia and Gondwana. Conclusions This study demonstrates the importance of the combined effect of geomorphological (the emergence of most islands in SE Asia approx. 30 million years ago) and climatic (the dramatic E-O climate change that shifted the tropical belt and reduced sea levels) factors in shaping species distribution within the sapindaceous clade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity. Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP-climate correlations. These relationships identified temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geographically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Ecotones are sensitive to change because they contain high numbers of species living at the margin of their environmental tolerance. This is equally true of tree-lines, which are determined by attitudinal or latitudinal temperature gradients. In the current context of climate change, they are expected to undergo modifications in position, tree biomass and possibly species composition. Attitudinal and latitudinal tree-lines differ mainly in the steepness of the underlying temperature gradient: distances are larger at latitudinal tree-lines, which could have an impact on the ability of tree species to migrate in response to climate change. Aside from temperature, tree-lines are also affected on a more local level by pressure from human activities. These are also changing as a consequence of modifications in our societies and may interact with the effects of climate change. Forest dynamics models are often used for climate change simulations because of their mechanistic processes. The spatially-explicit model TreeMig was used as a base to develop a model specifically tuned for the northern European and Alpine tree-line ecotones. For the latter, a module for land-use change processes was also added. The temperature response parameters for the species in the model were first calibrated by means of tree-ring data from various species and sites at both tree-lines. This improved the growth response function in the model, but also lead to the conclusion that regeneration is probably more important than growth for controlling tree-line position and species' distributions. The second step was to implement the module for abandonment of agricultural land in the Alps, based on an existing spatial statistical model. The sensitivity of its most important variables was tested and the model's performance compared to other modelling approaches. The probability that agricultural land would be abandoned was strongly influenced by the distance from the nearest forest and the slope, bath of which are proxies for cultivation costs. When applied to a case study area, the resulting model, named TreeMig-LAb, gave the most realistic results. These were consistent with observed consequences of land-abandonment such as the expansion of the existing forest and closing up of gaps. This new model was then applied in two case study areas, one in the Swiss Alps and one in Finnish Lapland, under a variety of climate change scenarios. These were based on forecasts of temperature change over the next century by the IPCC and the HadCM3 climate model (ΔT: +1.3, +3.5 and +5.6 °C) and included a post-change stabilisation period of 300 years. The results showed radical disruptions at both tree-lines. With the most conservative climate change scenario, species' distributions simply shifted, but it took several centuries reach a new equilibrium. With the more extreme scenarios, some species disappeared from our study areas (e.g. Pinus cembra in the Alps) or dwindled to very low numbers, as they ran out of land into which they could migrate. The most striking result was the lag in the response of most species, independently from the climate change scenario or tree-line type considered. Finally, a statistical model of the effect of reindeer (Rangifer tarandus) browsing on the growth of Pinus sylvestris was developed, as a first step towards implementing human impacts at the boreal tree-line. The expected effect was an indirect one, as reindeer deplete the ground lichen cover, thought to protect the trees against adverse climate conditions. The model showed a small but significant effect of browsing, but as the link with the underlying climate variables was unclear and the model was not spatial, it was not usable as such. Developing the TreeMig-LAb model allowed to: a) establish a method for deriving species' parameters for the growth equation from tree-rings, b) highlight the importance of regeneration in determining tree-line position and species' distributions and c) improve the integration of social sciences into landscape modelling. Applying the model at the Alpine and northern European tree-lines under different climate change scenarios showed that with most forecasted levels of temperature increase, tree-lines would suffer major disruptions, with shifts in distributions and potential extinction of some tree-line species. However, these responses showed strong lags, so these effects would not become apparent before decades and could take centuries to stabilise. Résumé Les écotones son sensibles au changement en raison du nombre élevé d'espèces qui y vivent à la limite de leur tolérance environnementale. Ceci s'applique également aux limites des arbres définies par les gradients de température altitudinaux et latitudinaux. Dans le contexte actuel de changement climatique, on s'attend à ce qu'elles subissent des modifications de leur position, de la biomasse des arbres et éventuellement des essences qui les composent. Les limites altitudinales et latitudinales diffèrent essentiellement au niveau de la pente des gradients de température qui les sous-tendent les distance sont plus grandes pour les limites latitudinales, ce qui pourrait avoir un impact sur la capacité des espèces à migrer en réponse au changement climatique. En sus de la température, la limite des arbres est aussi influencée à un niveau plus local par les pressions dues aux activités humaines. Celles-ci sont aussi en mutation suite aux changements dans nos sociétés et peuvent interagir avec les effets du changement climatique. Les modèles de dynamique forestière sont souvent utilisés pour simuler les effets du changement climatique, car ils sont basés sur la modélisation de processus. Le modèle spatialement explicite TreeMig a été utilisé comme base pour développer un modèle spécialement adapté pour la limite des arbres en Europe du Nord et dans les Alpes. Pour cette dernière, un module servant à simuler des changements d'utilisation du sol a également été ajouté. Tout d'abord, les paramètres de la courbe de réponse à la température pour les espèces inclues dans le modèle ont été calibrées au moyen de données dendrochronologiques pour diverses espèces et divers sites des deux écotones. Ceci a permis d'améliorer la courbe de croissance du modèle, mais a également permis de conclure que la régénération est probablement plus déterminante que la croissance en ce qui concerne la position de la limite des arbres et la distribution des espèces. La seconde étape consistait à implémenter le module d'abandon du terrain agricole dans les Alpes, basé sur un modèle statistique spatial existant. La sensibilité des variables les plus importantes du modèle a été testée et la performance de ce dernier comparée à d'autres approches de modélisation. La probabilité qu'un terrain soit abandonné était fortement influencée par la distance à la forêt la plus proche et par la pente, qui sont tous deux des substituts pour les coûts liés à la mise en culture. Lors de l'application en situation réelle, le nouveau modèle, baptisé TreeMig-LAb, a donné les résultats les plus réalistes. Ceux-ci étaient comparables aux conséquences déjà observées de l'abandon de terrains agricoles, telles que l'expansion des forêts existantes et la fermeture des clairières. Ce nouveau modèle a ensuite été mis en application dans deux zones d'étude, l'une dans les Alpes suisses et l'autre en Laponie finlandaise, avec divers scénarios de changement climatique. Ces derniers étaient basés sur les prévisions de changement de température pour le siècle prochain établies par l'IPCC et le modèle climatique HadCM3 (ΔT: +1.3, +3.5 et +5.6 °C) et comprenaient une période de stabilisation post-changement climatique de 300 ans. Les résultats ont montré des perturbations majeures dans les deux types de limites de arbres. Avec le scénario de changement climatique le moins extrême, les distributions respectives des espèces ont subi un simple glissement, mais il a fallu plusieurs siècles pour qu'elles atteignent un nouvel équilibre. Avec les autres scénarios, certaines espèces ont disparu de la zone d'étude (p. ex. Pinus cembra dans les Alpes) ou ont vu leur population diminuer parce qu'il n'y avait plus assez de terrains disponibles dans lesquels elles puissent migrer. Le résultat le plus frappant a été le temps de latence dans la réponse de la plupart des espèces, indépendamment du scénario de changement climatique utilisé ou du type de limite des arbres. Finalement, un modèle statistique de l'effet de l'abroutissement par les rennes (Rangifer tarandus) sur la croissance de Pinus sylvestris a été développé, comme première étape en vue de l'implémentation des impacts humains sur la limite boréale des arbres. L'effet attendu était indirect, puisque les rennes réduisent la couverture de lichen sur le sol, dont on attend un effet protecteur contre les rigueurs climatiques. Le modèle a mis en évidence un effet modeste mais significatif, mais étant donné que le lien avec les variables climatiques sous jacentes était peu clair et que le modèle n'était pas appliqué dans l'espace, il n'était pas utilisable tel quel. Le développement du modèle TreeMig-LAb a permis : a) d'établir une méthode pour déduire les paramètres spécifiques de l'équation de croissance ä partir de données dendrochronologiques, b) de mettre en évidence l'importance de la régénération dans la position de la limite des arbres et la distribution des espèces et c) d'améliorer l'intégration des sciences sociales dans les modèles de paysage. L'application du modèle aux limites alpines et nord-européennes des arbres sous différents scénarios de changement climatique a montré qu'avec la plupart des niveaux d'augmentation de température prévus, la limite des arbres subirait des perturbations majeures, avec des glissements d'aires de répartition et l'extinction potentielle de certaines espèces. Cependant, ces réponses ont montré des temps de latence importants, si bien que ces effets ne seraient pas visibles avant des décennies et pourraient mettre plusieurs siècles à se stabiliser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Evidence-based medicine (EBM) improves the quality of health care. Courses on how to teach EBM in practice are available, but knowledge does not automatically imply its application in teaching. We aimed to identify and compare barriers and facilitators for teaching EBM in clinical practice in various European countries. Methods: A questionnaire was constructed listing potential barriers and facilitators for EBM teaching in clinical practice. Answers were reported on a 7-point Likert scale ranging from not at all being a barrier to being an insurmountable barrier. Results: The questionnaire was completed by 120 clinical EBM teachers from 11 countries. Lack of time was the strongest barrier for teaching EBM in practice (median 5). Moderate barriers were the lack of requirements for EBM skills and a pyramid hierarchy in health care management structure (median 4). In Germany, Hungary and Poland, reading and understanding articles in English was a higher barrier than in the other countries. Conclusion: Incorporation of teaching EBM in practice faces several barriers to implementation. Teaching EBM in clinical settings is most successful where EBM principles are culturally embedded and form part and parcel of everyday clinical decisions and medical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids affect physiology and behaviour, reproduction and potentially sexual selection as well. Shortterm and moderate glucocorticoid elevations are suggested to be adaptive, and prolonged and high elevations may be extremely harmful. This suggests that optimal reproductive strategies, and thus sexual selection, may be dose dependent. Here, we investigate effects of moderate and high elevations of blood corticosterone levels on intra- and intersexual behaviour and mating success of male common lizards Lacerta vivipara. Females showed less interest and more aggressive behaviour towards high corticosterone males and blood corticosterone levels affected male reproductive strategy. Males of moderate and high corticosterone elevations, compared with Control males, showed increased interest (i.e., higher number of chases, tongue extrusions, and approaches) towards females and high corticosterone males initiated more copulation attempts. However, neither increased male interest nor increased copulation attempts resulted in more copulations. This provides evidence for a best-of-a-bad-job strategy, where males with higher corticosterone levels compensated for reduced female interest and increased aggressive female behaviour directed towards them, by showing higher interest and by conducting more copulation attempts. Blood corticosterone levels affected intrasexual selection as well since moderate corticosterone levels positively affected male dominance, but dominance did not affect mating success. These findings underline the importance of female mate choice and are in line with adaptive compensatory behaviours of males. They further show that glucocorticoid effects on behaviour are dose dependent and that they have important implications for sexual selection and social interactions, and might potentially affect Darwinian fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproductive division of labour is a defining characteristic of eusociality in insect societies. The task of reproduction is performed by the fertile males and queens of the colony, while the non-fertile female worker caste performs all other tasks related to colony upkeep, foraging and nest defence. Division of labour, or polyethism, within the worker caste is organized such that specific tasks are performed by discrete groups of individuals. Ordinarily, workers of one group will not participate in the tasks of other groups making the groups of workers behaviourally distinct. In some eusocial species, this has led to the evolution of a remarkable diversity of subcaste morphologies within the worker caste, and a division of labour amongst the subcastes. This caste polyethism is best represented in many species of ants where a smaller-bodied minor subcaste typically performs foraging duties while larger individuals of the major subcaste are tasked with nest defence. Recent work suggests that polyethism in the worker caste is influenced by an evolutionarily conserved, yet diversely regulated, gene called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). Additionally, flexibility in the activity of this enzyme allows for workers from one task group to assist the workers of other task groups in times of need during the colony's life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explore, for the first time, the impact of job insecurity on sexual desire. Cross-sectional analysis of a nationally representative sample of 7247 individuals aged 20-64 years working as full or part-time employees in Switzerland. The logistic regression analysis showed that workers aged 20-49 years perceiving high levels of job insecurity are exposed to a significantly higher risk of decrease of sexual desire compared to the reference group. The risk is 53% higher among men (OR 1.53; 95% CI 1.16-2.01) and 47% for woman (OR 1.47; 1.13-1.91). No increased risk was found for employees aged 50-64 years old. An increasing fear of job loss is associated with a deterioration in sexual desire. These first preliminary findings should promote further epidemiological and clinical prospective studies on the impact of job insecurity on intimate relationships and sexual dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative estimates of the range loss of mountain plants under climate change have so far mostly relied on static geographical projections of species' habitat shifts(1-3). Here, we use a hybrid model(4) that combines such projections with simulations of demography and seed dispersal to forecast the climate-driven spatio-temporal dynamics of 150 high-mountain plant species across the European Alps. This model predicts average range size reductions of 44-50% by the end of the twenty-first century, which is similar to projections from the most 'optimistic' static model (49%). However, the hybrid model also indicates that population dynamics will lag behind climatic trends and that an average of 40% of the range still occupied at the end of the twenty-first century will have become climatically unsuitable for the respective species, creating an extinction debt(5,6). Alarmingly, species endemic to the Alps seem to face the highest range losses. These results caution against optimistic conclusions from moderate range size reductions observed during the twenty-first century as they are likely to belie more severe longer-term effects of climate warming on mountain plants.

Relevância:

20.00% 20.00%

Publicador: