177 resultados para Identification of victims
Identification of Leishmania major cysteine proteinases as targets of the immune response in humans.
Resumo:
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.
Resumo:
BACKGROUND: The diagnosis of hypertension in children is difficult because of the multiple sex-, age-, and height-specific thresholds to define elevated blood pressure (BP). Blood pressure-to-height ratio (BPHR) has been proposed to facilitate the identification of elevated BP in children. OBJECTIVE: We assessed the performance of BPHR at a single screening visit to identify children with hypertension that is sustained elevated BP. METHOD: In a school-based study conducted in Switzerland, BP was measured at up to three visits in 5207 children. Children had hypertension if BP was elevated at the three visits. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for the identification of hypertension were assessed for different thresholds of BPHR. The ability of BPHR at a single screening visit to discriminate children with and without hypertension was evaluated with receiver operating characteristic (ROC) curve analyses. RESULTS: The prevalence of systolic/diastolic hypertension was 2.2%. Systolic BPHR had a better performance to identify hypertension compared with diastolic BPHR (area under the ROC curve: 0.95 vs. 0.84). The highest performance was obtained with a systolic BPHR threshold set at 0.80 mmHg/cm (sensitivity: 98%; specificity: 85%; PPV: 12%; and NPV: 100%) and a diastolic BPHR threshold set at 0.45 mmHg/cm (sensitivity: 79%; specificity: 70%; PPV: 5%; and NPV: 99%). The PPV was higher among tall or overweight children. CONCLUSION: BPHR at a single screening visit had a high performance to identify hypertension in children, although the low prevalence of hypertension led to a low PPV.
Resumo:
Previous microarray studies on breast cancer identified multiple tumour classes, of which the most prominent, named luminal and basal, differ in expression of the oestrogen receptor alpha gene (ER). We report here the identification of a group of breast tumours with increased androgen signalling and a 'molecular apocrine' gene expression profile. Tumour samples from 49 patients with large operable or locally advanced breast cancers were tested on Affymetrix U133A gene expression microarrays. Principal components analysis and hierarchical clustering split the tumours into three groups: basal, luminal and a group we call molecular apocrine. All of the molecular apocrine tumours have strong apocrine features on histological examination (P=0.0002). The molecular apocrine group is androgen receptor (AR) positive and contains all of the ER-negative tumours outside the basal group. Kolmogorov-Smirnov testing indicates that oestrogen signalling is most active in the luminal group, and androgen signalling is most active in the molecular apocrine group. ERBB2 amplification is commoner in the molecular apocrine than the other groups. Genes that best split the three groups were identified by Wilcoxon test. Correlation of the average expression profile of these genes in our data with the expression profile of individual tumours in four published breast cancer studies suggest that molecular apocrine tumours represent 8-14% of tumours in these studies. Our data show that it is possible with microarray data to divide mammary tumour cells into three groups based on steroid receptor activity: luminal (ER+ AR+), basal (ER- AR-) and molecular apocrine (ER- AR+).
Resumo:
Cancer stem cells that display tumor-initiating properties have recently been identified in several distinct types of malignancies, holding promise for more effective therapeutic strategies. However, evidence of such cells in sarcomas, which include some of the most aggressive and therapy-resistant tumors, has not been shown to date. Here, we identify and characterize cancer stem cells in Ewing's sarcoma family tumors (ESFT), a highly aggressive pediatric malignancy believed to be of mesenchymal stem cell (MSC) origin. Using magnetic bead cell separation of primary ESFT, we have isolated a subpopulation of CD133+ tumor cells that display the capacity to initiate and sustain tumor growth through serial transplantation in nonobese diabetic/severe combined immunodeficiency mice, re-establishing at each in vivo passage the parental tumor phenotype and hierarchical cell organization. Consistent with the plasticity of MSCs, in vitro differentiation assays showed that the CD133+ cell population retained the ability to differentiate along adipogenic, osteogenic, and chondrogenic lineages. Quantitative real-time PCR analysis of genes implicated in stem cell maintenance revealed that CD133+ ESFT cells express significantly higher levels of OCT4 and NANOG than their CD133- counterparts. Taken together, our observations provide the first identification of ESFT cancer stem cells and demonstration of their MSC properties, a critical step towards a better biological understanding and rational therapeutic targeting of these tumors.
Resumo:
Urine samples from 20 male volunteers of European Caucasian origin were stored at 4 degrees C over a 4-month period in order to compare the identification potential of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) markers. The amount of nDNA recovered from urines dramatically declined over time. Consequently, nDNA likelihood ratios (LRs) greater than 1,000 were obtained for 100, 70 and 55% of the urines analysed after 6, 60 and 120 days, respectively. For the mtDNA, HVI and HVII sequences were obtained for all samples tested, whatever the period considered. Nevertheless, the highest mtDNA LR of 435 was relatively low compared to its nDNA equivalent. Indeed, LRs obtained with only three nDNA loci could easily exceed this value and are quite easier to obtain. Overall, the joint use of nDNA and mtDNA markers enabled the 20 urine samples to be identified, even after the 4-month period.
Resumo:
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Resumo:
OBJECTIVE: To identify the genetic causes underlying early-onset autosomal recessive retinitis pigmentosa (arRP) in the Spanish population and describe the associated phenotype. DESIGN: Case series. PARTICIPANTS: A total of 244 unrelated families affected by early-onset arRP. METHODS: Homozygosity mapping or exome sequencing analysis was performed in 3 families segregating arRP. A mutational screening was performed in 241 additional unrelated families for the p.Ser452Stop mutation. Haplotype analysis also was conducted. Individuals who were homozygotes, double heterozygotes, or carriers of mutations in RP1 underwent an ophthalmic evaluation to establish a genotype-phenotype correlation. MAIN OUTCOME MEASURES: DNA sequence variants, homozygous regions, haplotypes, best-corrected visual acuity, visual field assessments, electroretinogram responses, and optical coherence tomography images. RESULTS: Four novel mutations in RP1 were identified. The new mutation p.Ser542Stop was present in 11 of 244 (4.5%) of the studied families. All chromosomes harboring this mutation shared the same haplotype. All patients presented a common phenotype with an early age of onset and a prompt macular degeneration, whereas the heterozygote carriers did not show any signs of retinitis pigmentosa (RP). CONCLUSIONS: p.Ser542Stop is a single founder mutation and the most prevalent described mutation in the Spanish population. It causes early-onset RP with a rapid macular degeneration and is responsible for 4.5% of all cases. Our data suggest that the implication of RP1 in arRP may be underestimated. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
The pathogenesis of androgenetic alopecia (AGA, male-pattern baldness) is driven by androgens, and genetic predisposition is the major prerequisite. Candidate gene and genome-wide association studies have reported that single-nucleotide polymorphisms (SNPs) at eight different genomic loci are associated with AGA development. However, a significant fraction of the overall heritable risk still awaits identification. Furthermore, the understanding of the pathophysiology of AGA is incomplete, and each newly associated locus may provide novel insights into contributing biological pathways. The aim of this study was to identify unknown AGA risk loci by replicating SNPs at the 12 genomic loci that showed suggestive association (5 × 10(-8)<P<10(-5)) with AGA in a recent meta-analysis. We analyzed a replication set comprising 2,759 cases and 2,661 controls of European descent to confirm the association with AGA at these loci. Combined analysis of the replication and the meta-analysis data identified four genome-wide significant risk loci for AGA on chromosomes 2q35, 3q25.1, 5q33.3, and 12p12.1. The strongest association signal was obtained for rs7349332 (P=3.55 × 10(-15)) on chr2q35, which is located intronically in WNT10A. Expression studies in human hair follicle tissue suggest that WNT10A has a functional role in AGA etiology. Thus, our study provides genetic evidence supporting an involvement of WNT signaling in AGA development.
Resumo:
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which - apposition of the dorsal and ventral wing sheets during metamorphosis - is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Resumo:
Heat shock protein 90 (Hsp90) is an essential chaperone involved in the fungal stress response that can be harnessed as a novel antifungal target for the treatment of invasive aspergillosis. We previously showed that genetic repression of Hsp90 reduced Aspergillus fumigatus virulence and potentiated the effect of the echinocandin caspofungin. In this study, we sought to identify sites of posttranslational modifications (phosphorylation or acetylation) that are important for Hsp90 function in A. fumigatus. Phosphopeptide enrichment and tandem mass spectrometry revealed phosphorylation of three residues in Hsp90 (S49, S288, and T681), but their mutation did not compromise Hsp90 function. Acetylation of lysine residues of Hsp90 was recovered after treatment with deacetylase inhibitors, and acetylation-mimetic mutations (K27A and K271A) resulted in reduced virulence in a murine model of invasive aspergillosis, supporting their role in Hsp90 function. A single deletion of lysine K27 or an acetylation-mimetic mutation (K27A) resulted in increased susceptibility to voriconazole and caspofungin. This effect was attenuated following a deacetylation-mimetic mutation (K27R), suggesting that this site is crucial and should be deacetylated for proper Hsp90 function in antifungal resistance pathways. In contrast to previous reports in Candida albicans, the lysine deacetylase inhibitor trichostatin A (TSA) was active alone against A. fumigatus and potentiated the effect of caspofungin against both the wild type and an echinocandin-resistant strain. Our results indicate that the Hsp90 K27 residue is required for azole and echinocandin resistance in A. fumigatus and that deacetylase inhibition may represent an adjunctive anti-Aspergillus strategy.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS3₁₄₀₆₋₁₄₁₅ and NS5B₂₅₉₄₋₂₆₀₂). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.
Resumo:
In experimental animals, oncofoetal antigens1 have been found to be associated with both chemical-2 and virus-induced tumours3. In man the two best known oncofoetal antigens are the α-foetoprotein (AFP) described by both Abelev4 and Tatarinov5 and the carcinoembryonic antigen (CEA) of the human digestive system identified by Gold and Freedman6. We describe here a different human oncofoetal antigen, common to several types of carcinomas and various foetal organs. This antigen has been identified by rabbit antisera raised against semipurified fractions of colon carcinoma soluble extracts. Because of its β-immunoelectrophoretic mobility, this antigen will be referred to as β-oncofoetal antigen (BOFA).
Resumo:
Three sibling species of shrews, the common shrew (Sorex araneus), the Valais shrew (S. antinorii) and the Jersey shrew (S. coronatus) are morphologically similar. Different techniques based on karyorypes, morphology, biochemistry and genetic markers have been developed to identify individuals from these taxa. In this paper, we have used multiple microsatellite markers (L13, L14 and L99) to identify 55 dead animals coming from the Tarentaise Valley in France. As some individuals showed an unclear pattern with loci previously thought to be diagnostic (Lugon-Moulin et al. 2000), we have used morphologic measurements (Hausser et al. 1991) to confirm the status of these animals. This analysis clearly showed the limitations of the use of genetic diagnostic markers that have been designed in local populations and then applied to a wider scale. Even if these markers have great advantages over other techniques (i.e. simple to use and do not require samples from living animals), they should always be used with caution. There is always a risk of a locus not being diagnostic in the sampling region or in finding individuals with hybrid genotypes. Additional genetic markers should then be used, simultaneously with other identification techniques, to be sure of the status of the individuals.
Resumo:
ABSTRACT Poor outcome for glioblastoma patients is largely due to resistance to chemoradiation therapy. While epigenetic inactivation of MGMT mediated DNA repair is highly predictive for benefit from the alkylating agent therapy Temozolomide, additional mechanisms for resistance associated with molecular alterations exist. Furthermore, new concepts in cancer suggest that resistance to treatment may be linked to cancer stem cells that escape therapy and act as source for tumour recurrence. We determined gene expression signatures associated with outcome in glioblastoma patients enrolled in a phase II and phase III clinical trial establishing the new combination therapy of radiation plus concomitant and adjuvant Temozolomide. Correlating stable gene clusters emerging from unsupervised analysis with survival of 42 treated patients identified a number of biological processes associated with outcome. Most prominent, a gene cluster dominated by HOX genes and comprising PROM1, was associated with resistance. PROM1 encodes CD133, a marker for a subpopulation of tumour cells enriched for glioblastoma stem- like cells. The core of this correlated HOX cluster was comprised in the top genes of a "self-renewal signature" defined in a mouse model for MLL-AF9 initiated leukaemia. The association of the HOX gene cluster with tumour resistance was confirmed in two external data sets of 146 malignant glioma As additional resistance factors we identified over-expression of the epidermal growth factor receptor gene, EGFR, while increased gene expression related to biological features of tumour host interaction, including markers for tumour vascular and cell adhesion, and innate immune response, were associated with better outcome. The "self-renewal" signature associated with resistance to the new combination chemoradiation therapy provides first clinical evidence that glioma stem like cells may implicated in resistance in a uniformly treated cohort of glioblastoma patients. This study underlines the need to target the tumour stem cell compartment, and provides some testable hypothesis for biological mechanisms relevant for malignant behaviour of glioblastoma that may be targeted in new treatment approaches. Résumé Le glioblastome, tumeur cérébrale primaire maligne la plus fréquente, est connue pour son mauvais pronostique. Des avancées chimiothérapeutiques récentes avec des agents alkylants comme le témozolomide (TMZ), ont permis une amélioration notable dans la survie de certains patients. Les bénéficiaires ont la caractéristique commune de présenter une particularité génétique, la methylation du MGMT (methylguanine methyltransferase). Néanmoins, d'autres mécanismes de résistance en fonction des aberrations moléculaires existent. Nous avons établi les profils d'expressions génétiques des patients traités par irradiation et TMZ dans des études cliniques de phase II et III. En combinant des méthodes non-supervisées et supervisées, de l'étude de la cohorte des patients traités nous avons découvert des groupes de gènes associés à la survie. Un ensemble de gènes contenant les gènes Hox semble lié au mécanisme de résistance au traitement. Récemment, les gènes Hox ont été décrits comme faisant partie d"une signature d'autorenouvellement (self-renewal) des cellules souches cancéreuses de la leucémie. L'autorenouvellement est un processus grâce auquel les cellules souches se maintiennent tout au long de la vie. Cette association à la résistance est confirmée dans deux autres études indépendantes. Un autre facteur de résistance au traitement est la surexpression du gène EGFR. D'autre part, deux groupes de gènes associés à la relation entre hôte-tumeur tels que les marqueurs des vaisseaux tumoraux et de la réponse immunitaire innée s'avèrent avoir un effet positif sur la survie des patients traités. La découverte de la signature d'autorenouvellement comme facteur de résistance à la nouvelle chimio-radiothérapie offre une preuve clinique que les cellules souches cancéreuses sont impliquées dans la résistance au traitement. If est donc logique de penser que le traitement ciblé contre des cellules souches cancéreuses va dans l'avenir permettre des thérapies anticancéreuses plus performantes.