148 resultados para IONIZING-RADIATION
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
Tumor-infiltrating macrophages typically promote angiogenesis while suppressing antitumoral T cell responses. In this issue of Cancer Cell, Klug and colleagues report that clinically-feasible, low-dose irradiation redirects macrophage differentiation from a tumor-promoting/immunosuppressive state to one that enables cytotoxic T cells to infiltrate tumors and kill cancer cells, rendering immunotherapy successful in mice.
Resumo:
Ulcerative colitis, an inflammatory bowel disease, is believed to result from a breakdown of dominant tolerance mechanisms that normally control intestinal immunity. Although CD4+ T lymphocyte subpopulations and expression of MHC class II molecules have been shown to play a role in the pathogenesis of the disease, the nature of the responsible mechanisms remains unclear. In this paper we describe a novel mouse model for inflammatory bowel disease, radiation-induced colitis, that occurs with complete penetrance 6-8 wk postinduction. A combination of high dose gamma-irradiation and lack of MHC class II expression on cells of hemopoietic origin results in development of colitis in C57BL/6 mice. Because of its versatility (due to susceptibility of mice of the widely genetically manipulated C57BL/6 background), high reproducibility, and 100% penetrance, radiation-induced colitis will be a useful mouse model for colitis and a significant tool to study dominant immunological tolerance mechanisms. Moreover, our data imply that tolerization to enteric Ags requires MHC class II mediated presentation by APC of hemopoietic origin.
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniques are used. First, Xenon CT is an equilibrium technique based on a freely diffusible tracer. First pass of iodinated contrast injected intravenously is a second method, more widely available. Both methods are proven to be robust and quantitative, thanks to the linear relationship between contrast concentration and x-ray attenuation. For the CT methods, concern regarding x-ray doses delivered to the patients need to be addressed. MR is also able to assess brain perfusion using the first pass of gadolinium based contrast agent injected intravenously. This method has to be considered as a semi-quantitative because of the non linear relationship between contrast concentration and MR signal changes. Arterial spin labeling is another MR method assessing brain perfusion without injection of contrast. In such case, the blood flow in the carotids is magnetically labelled by an external radiofrequency pulse and observed during its first pass through the brain. Each of this various CT and MR techniques have advantages and limits that will be illustrated and summarized.Learning Objectives:1. To understand and compare the different techniques for brain perfusion imaging.2. To learn about the methods of acquisition and post-processing of brain perfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
This is one of the few studies that have explored the value of baseline symptoms and health-related quality of life (HRQOL) in predicting survival in brain cancer patients. Baseline HRQOL scores (from the EORTC QLQ-C30 and the Brain Cancer Module (BN 20)) were examined in 490 newly diagnosed glioblastoma cancer patients for the relationship with overall survival by using Cox proportional hazards regression models. Refined techniques as the bootstrap re-sampling procedure and the computation of C-indexes and R(2)-coefficients were used to try and validate the model. Classical analysis controlled for major clinical prognostic factors selected cognitive functioning (P=0.0001), global health status (P=0.0055) and social functioning (P<0.0001) as statistically significant prognostic factors of survival. However, several issues question the validity of these findings. C-indexes and R(2)-coefficients, which are measures of the predictive ability of the models, did not exhibit major improvements when adding selected or all HRQOL scores to clinical factors. While classical techniques lead to positive results, more refined analyses suggest that baseline HRQOL scores add relatively little to clinical factors to predict survival. These results may have implications for future use of HRQOL as a prognostic factor in cancer patients.
Resumo:
Background Surgery of radiation-induced cataracts in children with retinoblastoma (RB) is a challenge as early intervention is weighted against the need to delay surgery until complete tumour control is obtained. This study analyses the safety and functional results of such surgery. Methods In a retrospective, non-comparative, consecutive case series, we reviewed medical records of RB patients </=14 y of age who underwent either external beam radiotherapy or plaque treatment and were operated for radiation-induced cataract between 1985 and 2008. Results In total, 21 eyes of 20 RB patients were included and 18 out of the 21 eyes had Reese-Ellsworth stage V or ABC classification group D/E RB. Median interval between last treatment for RB and cataract surgery was 21.5 months, range 3-164 months. Phacoaspiration was performed in 13 eyes (61%), extra-capsular cataract extraction in 8 (39%) and intraocular lens implantation in 19 eyes (90%). The majority of cases, 11/21 (52%), underwent posterior capsulorhexis or capsulotomy and 6/21 (28%) an anterior vitrectomy. Postoperative visual acuity was >/=20/200 in 13 eyes and <20/200 in 5 eyes. Intraocular tumour recurrence was noted in three eyes. Mean postoperative follow up was 90 months+/-69 months. Conclusions Modern cataract surgery, including clear cornea approach, lens aspiration with posterior capsulotomy, anterior vitrectomy and IOL implantation is a safe procedure for radiation-induced cataract as long as RB is controlled. The visual prognosis is limited by initial tumour involvement of the macula and by corneal complications of radiotherapy. We recommend a minimal interval of 9 months between completion of treatment of retinoblastoma and cataract surgery.
Resumo:
PURPOSE: Since 1982, the Radiation Oncology Group of the EORTC (EORTC ROG) has pursued an extensive Quality Assurance (QA) program involving all centres actively participating in its clinical research. The first step is the evaluation of the structure and of the human, technical and organisational resources of the centres, to assess their ability to comply with the current requirements for high-tech radiotherapy (RT). MATERIALS AND METHODS: A facility questionnaire (FQ) was developed in 1989 and adapted over the years to match the evolution of RT techniques. We report on the contents of the current FQ that was completed online by 98 active EORTC ROG member institutions from 19 countries, between December 2005 and October 2007. RESULTS: Similar to the data collected previously, large variations in equipment, staffing and workload between centres remain. Currently only 15 centres still use a Cobalt unit. All centres perform 3D Conformal RT, 79% of them can perform IMRT and 54% are able to deliver stereotactic RT. An external reference dosimetry audit (ERDA) was performed in 88% of the centres for photons and in 73% for electrons, but it was recent (<2 years) in only 74% and 60%, respectively. CONCLUSION: The use of the FQ helps maintain the minimum quality requirements within the EORTC ROG network: recommendations are made on the basis of the analysis of its results. The present analysis shows that modern RT techniques are widely implemented in the clinic but also that ERDA should be performed more frequently. Repeated assessment using the FQ is warranted to document the future evolution of the EORTC ROG institutions.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
Combined radiation and hormone therapies have become common clinical practice in recent years for locally-advanced prostate cancers. The use of such concomitant therapy in the treatment of breast disease has been infrequently reported in the literature, but seems justified given the common hormonal dependence of breast cancer and the potential synergistic effect of these two treatment modalities. As adjuvant therapy, two strategies are used in daily clinical practice: upfront aromatase inhibitors or sequentially after a variable delay of tamoxifen. These molecules may, thus, interact with radiotherapy. Retrospectives studies recently published did not show any differences in terms of locoregional recurrences between concurrent or sequential radiohormonotherapy. Lung and skin fibroses due to concurrent treatment are still under debate. Nevertheless, late side effects appeared to be increased by such a treatment, particularly in hypersensitive patients identified at risk by the lymphocyte predictive test. Concurrent radiohormonotherapy should, thus, be delivered cautiously at least for these patients. This article details the potent advantages and risks of concurrent use of adjuvant hormonotherapy and radiotherapy in localized breast cancers.
Resumo:
Ultrafractionation of radiation therapy is a novel regimen consisting of irradiating tumors several times daily, delivering low doses (<0.75 Gy) at which hyperradiosensitivity occurs. We recently demonstrated the high efficiency of ultrafractionated radiotherapy (RT) on glioma xenografts and report here on a phase II clinical trial to determine the safety, tolerability, and efficacy of an ultrafractionation regimen in patients with newly and inoperable glioblastoma (GBM). Thirty-one patients with histologically proven, newly diagnosed, and unresectable supratentorial GBM (WHO grade IV) were enrolled. Three daily doses of 0.75 Gy were delivered at least 4 hours apart, 5 days per week over 6-7 consecutive weeks (90 fractions for a total of 67.5 Gy). Conformal irradiation included the tumor bulk with a margin of 2.5 cm. The primary end points were safety, toxicity, and tolerability, and the secondary end points were overall survival (OS) and progression-free survival (PFS). Multivariate analysis was used to compare the OS and PFS with the EORTC-NCIC trial 26981-22981/CE.3 of RT alone vs radiation therapy and temozolomide (TMZ). The ultrafractionation radiation regimen was safe and well tolerated. No acute Grade III and/or IV CNS toxicity was observed. Median PFS and OS from initial diagnosis were 5.1 and 9.5 months, respectively. When comparing with the EORTC/NCIC trial, in both PFS and OS multivariate analysis, ultrafractionation showed superiority over RT alone, but not over RT and TMZ. The ultrafractionation regimen is safe and may prolong the survival of patients with GBM. Further investigation is warranted and a trial associating ultra-fractionation and TMZ is ongoing.