105 resultados para Hepatic growth factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photons participate in many atomic and molecular interactions and changes. Recent biophysical research has shown the induction of ultraweak photons in biological tissue. It is now established that plants, animal and human cells emit a very weak radiation which can be readily detected with an appropriate photomultiplier system. Although the emission is extremely low in mammalian cells, it can be efficiently induced by ultraviolet light. In our studies, we used the differentiation system of human skin fibroblasts from a patient with Xeroderma Pigmentosum of complementation group A in order to test the growth stimulation efficiency of various bone growth factors at concentrations as low as 5 ng/ml of cell culture medium. In additional experiments, the cells were irradiated with a moderate fluence of ultraviolet A. The different batches of growth factors showed various proliferation of skin fibroblasts in culture which could be correlated with the ultraweak photon emission. The growth factors reduced the acceleration of the fibroblast differentiation induced by mitomycin C by a factor of 10-30%. In view that fibroblasts play an essential role in skin aging and wound healing, the fibroblast differentiation system is a very useful tool in order to elucidate the efficacy of growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vertebrates, different isoforms of fibroblast growth factor 2 (FGF2) exist, which differ by their N-terminal extension. They show different localization and expression levels and exert distinct biological effects. Nevertheless, genetic inactivation of all FGF2 isoforms in the mouse results in only mild phenotypes. Here, we analyzed mouse FGF2, and show that, as in the human, mouse FGF2 contains CTG-initiated high molecular-weight (HMW) isoforms, which contain a nuclear localization signal, and which mediate localization of this isoform to the nucleus. Using green fluorescent protein-FGF2 fusions, we furthermore observed, that C-terminal deletions disable nuclear localization of the short low-molecular-weight (LMW) 18-kDa isoform. This loss of specific localization is accompanied by a loss in heparin binding. We therefore suggest that, first, localization of mouse FGF2 is comparable to that in other vertebrates and, second, FGF2 contains at least two sequences important for nuclear localization, a nuclear localization sequence at the N terminus which is only contained in the HMW isoform, and another sequence at the C terminus, which is only required for localization of the LMW 18-kDa isoform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although experimental studies have suggested that insulin-like growth factor I (IGF-I) and its binding protein IGFBP-3 might have a role in the aetiology of coronary artery disease (CAD), the relevance of circulating IGFs and their binding proteins in the development of CAD in human populations is unclear. We conducted a nested case-control study, with a mean follow-up of six years, within the EPIC-Norfolk cohort to assess the association between circulating levels of IGF-I and IGFBP-3 and risk of CAD in up to 1,013 cases and 2,055 controls matched for age, sex and study enrolment date. After adjustment for cardiovascular risk factors, we found no association between circulating levels of IGF-I or IGFBP-3 and risk of CAD (odds ratio: 0.98 (95% Cl 0.90-1.06) per 1 SD increase in circulating IGF-I; odds ratio: 1.02 (95% Cl 0.94-1.12) for IGFBP-3). We examined associations between tagging single nucleotide polymorphisms (tSNPs) at the IGF1 and IGFBP3 loci and circulating IGF-I and IGFBP-3 levels in up to 1,133 cases and 2,223 controls and identified three tSNPs (rs1520220, rs3730204, rs2132571) that showed independent association with either circulating IGF-I or IGFBP-3 levels. In an assessment of 31 SNPs spanning the IGF1 or IGFBP3 loci, none were associated with risk of CAD in a meta-analysis that included EPIC-Norfolk and eight additional studies comprising up to 9,319 cases and 19,964 controls. Our results indicate that IGF-I and IGFBP-3 are unlikely to be importantly involved in the aetiology of CAD in human populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy given in a metronomic manner can be administered with less adverse effects which are common with conventional schedules such as myelotoxicity and gastrointestinal toxicity and thus may be appropriate for older patients and patients with decreased performance status. Efficacy has been observed in several settings. An opportunity to improve the efficacy of metronomic schedules without significantly increasing toxicity presents with the addition of anti-angiogenic targeted treatments. These combinations rational stems from the understanding of the importance of angiogenesis in the mechanism of action of metronomic chemotherapy which may be augmented by specific targeting of the vascular endothelial growth factor (VEGF) pathway by antibodies or small tyrosine kinase inhibitors. Combinations of metronomic chemotherapy schedules with VEGF pathway targeting drugs will be discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gastro-oesophageal adenocarcinomas rarely metastasize to the central nervous system (CNS). The role of the human epidermal growth factor receptor 2 (HER2) in patients with these cancers and CNS involvement is presently unknown. PATIENTS AND METHODS: A multicentre registry was established to collect data from patients with gastro-oesophageal adenocarcinomas and CNS involvement both retrospectively and prospectively. Inclusion in the study required a predefined clinical data set, a central neuro-radiological or histopathological confirmation of metastatic CNS involvement and central assessment of HER2 by immunohistochemistry (IHC) and in situ hybridisation (ISH). In addition, expression of E-cadherin and DNA mismatch repair (MMR) proteins were assessed by IHC. RESULTS: One hundred patients fulfilled the inclusion criteria. The population's median age was 59 years (interquartile range: 54-68), of which 85 (85%) were male. Twenty-five patients were of Asian and 75 of Caucasian origin. HER2 status was positive in 36% (95% CI: 26.6-46.2) of cases. Median time from initial diagnosis to the development of brain metastases (BMets) or leptomeningeal carcinomatosis (LC) was 9.9 months (95% CI: 8.5-15.0). Median overall survival from diagnosis was 16.9 months (95% CI: 14.0-20.7) and was not related to the HER2 status. E-cadherin loss was observed in 9% of cases and loss of expression in at least one DNA MMR proteins in 6%. CONCLUSIONS: The proportion of a positive HER2 status in patients with gastro-oesophageal adenocarcinoma and CNS involvement was higher than expected. The impact of anti-HER2 therapies should be studied prospectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GH-2000 and GH-2004 projects have developed a method for detecting GH misuse based on measuring insulin-like growth factor-I (IGF-I) and the amino-terminal pro-peptide of type III collagen (P-III-NP). The objectives were to analyze more samples from elite athletes to improve the reliability of the decision limit estimates, to evaluate whether the existing decision limits needed revision, and to validate further non-radioisotopic assays for these markers. The study included 998 male and 931 female elite athletes. Blood samples were collected according to World Anti-Doping Agency (WADA) guidelines at various sporting events including the 2011 International Association of Athletics Federations (IAAF) World Athletics Championships in Daegu, South Korea. IGF-I was measured by the Immunotech A15729 IGF-I IRMA, the Immunodiagnostic Systems iSYS IGF-I assay and a recently developed mass spectrometry (LC-MS/MS) method. P-III-NP was measured by the Cisbio RIA-gnost P-III-P, Orion UniQ? PIIINP RIA and Siemens ADVIA Centaur P-III-NP assays. The GH-2000 score decision limits were developed using existing statistical techniques. Decision limits were determined using a specificity of 99.99% and an allowance for uncertainty because of the finite sample size. The revised Immunotech IGF-I - Orion P-III-NP assay combination decision limit did not change significantly following the addition of the new samples. The new decision limits are applied to currently available non-radioisotopic assays to measure IGF-I and P-III-NP in elite athletes, which should allow wider flexibility to implement the GH-2000 marker test for GH misuse while providing some resilience against manufacturer withdrawal or change of assays. Copyright © 2015 John Wiley & Sons, Ltd.