146 resultados para HISTIDINE TRIAD NUCLEOTIDE-BINDING PROTEIN-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous epidemiological studies and some pharmacological clinical trials show the close connection between Alzheimer disease (AD) and type 2 diabetes (T2D) and thereby, shed more light into the existence of possible similar pathogenic mechanisms between these two diseases. Diabetes increases the risk of developing AD and sensitizers of insulin currently used as diabetes drugs can efficiently slow cognitive decline of the neurological disorder. Deposits of amyloid aggregate and hyperphosphorylation of tau, which are hallmarks of AD, have been also found in degenerating pancreatic islets beta-cells of patients with T2D. These events may have a causal role in the pathogenesis of the two diseases. Increased c-Jun NH(2)-terminal kinase (JNK) activity is found in neurofibrillary tangles (NFT) of AD and promotes programmed cell death of beta-cells exposed to a diabetic environment. The JNK-interacting protein 1 (JIP-1), also called islet brain 1 (IB1) because it is mostly expressed in the brain and islets, is a key regulator of the JNK pathway in neuronal and beta-cells. JNK, hyperphosphorylated tau and IB1/JIP-1 all co-localize with amyloids deposits in NFT and islets of AD and patients with T2D. This review discusses the role of the IB1/JIP-1 and the JNK pathway in the molecular pathogenesis of AD and T2D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Penicillin resistance in Streptococcus spp. involves multiple mutations in both penicillin-binding proteins (PBPs) and non-PBP genes. Here, we studied the development of penicillin resistance in the oral commensal Streptococcus gordonii. Cyclic exposure of bacteria to twofold-increasing penicillin concentrations selected for a progressive 250- to 500-fold MIC increase (from 0.008 to between 2 and 4 microg/ml). The major MIC increase (> or = 35-fold) was related to non-PBP mutations, whereas PBP mutations accounted only for a 4- to 8-fold additional increase. PBP mutations occurred in class B PBPs 2X and 2B, which carry a transpeptidase domain, but not in class A PBP 1A, 1B, or 2A, which carry an additional transglycosylase domain. Therefore, we tested whether inactivation of class A PBPs affected resistance development in spite of the absence of mutations. Deletion of PBP 1A or 2A profoundly slowed down resistance development but only moderately affected resistance in already highly resistant mutants (MIC = 2 to 4 microg/ml). Thus, class A PBPs might facilitate early development of resistance by stabilizing penicillin-altered peptidoglycan via transglycosylation, whereas they might be less indispensable in highly resistant mutants which have reestablished a penicillin-insensitive cell wall-building machinery. The contribution of PBP and non-PBP mutations alone could be individualized in DNA transformation. Both PBP and non-PBP mutations conferred some level of intrinsic resistance, but combining the mutations synergized them to ensure high-level resistance (> or = 2 microg/ml). The results underline the complexity of penicillin resistance development and suggest that inhibition of transglycosylase might be an as yet underestimated way to interfere with early resistance development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-brain1/JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein that organizes the JNK, MKK7, and MLK1 to allow signaling specificity. Targeted disruption of the gene MAPK8IP1 encoding IB1/JIP-1 in mice led to embryonic death prior to blastocyst implantation. In culture, no IB1/JIP-1(-/-) embryos were identified indicating that accelerated cell death occurred during the first cell cycles. IB1/JIP-1 expression was detected in unfertilized oocytes, in spermatozoa, and in different stages of embryo development. Thus, despite the maternal and paternal transmission of the IB1/JIP-1 protein, early transcription of the MAPK8IP1 gene is required for the survival of the fertilized oocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medical implants, like cardiovascular devices, improve the quality of life for countless individuals but may become infected with bacteria like Staphylococcus aureus. Such infections take the form of a biofilm, a structured community of bacterial cells adherent to the surface of a solid substrate. Every biofilm begins with an attractive force or bond between bacterium and substratum. We used atomic force microscopy to probe experimentally forces between a fibronectin-coated surface (i.e., proxy for an implanted cardiac device) and fibronectin-binding receptors on the surface of individual living bacteria from each of 80 clinical isolates of S. aureus. These isolates originated from humans with infected cardiac devices (CDI; n = 26), uninfected cardiac devices (n = 20), and the anterior nares of asymptomatic subjects (n = 34). CDI isolates exhibited a distinct binding-force signature and had specific single amino acid polymorphisms in fibronectin-binding protein A corresponding to E652D, H782Q, and K786N. In silico molecular dynamics simulations demonstrate that residues D652, Q782, and N786 in fibronectin-binding protein A form extra hydrogen bonds with fibronectin, complementing the higher binding force and energy measured by atomic force microscopy for the CDI isolates. This study is significant, because it links pathogenic bacteria biofilms from the length scale of bonds acting across a nanometer-scale space to the clinical presentation of disease at the human dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B lymphocytes are among the first cells to be infected by mouse mammary tumor virus (MMTV), and they play a crucial role in its life cycle. To study transcriptional regulation of MMTV in B cells, we have analyzed two areas of the long terminal repeat (LTR) next to the glucocorticoid receptor binding site, fp1 (at position -139 to -146 from the cap site) and fp2 (at -157 to -164). Both showed B-cell-specific protection in DNase I in vitro footprinting assays and contain binding sites for Ets transcription factors, a large family of proteins involved in cell proliferation and differentiation and oncogenic transformation. In gel retardation assays, fp1 and fp2 bound the heterodimeric Ets factor GA-binding protein (GABP) present in B-cell nuclear extracts, which was identified by various criteria: formation of dimers and tetramers, sensitivity to pro-oxidant conditions, inhibition of binding by specific antisera, and comigration of complexes with those formed by recombinant GABP. Mutations which prevented complex formation in vitro abolished glucocorticoid-stimulated transcription from an MMTV LTR linked to a reporter gene in transiently transfected B-cell lines, whereas they did not affect the basal level. Exogenously expressed GABP resulted in an increased level of hormone response of the LTR reporter plasmid and produced a synergistic effect with the coexpressed glucocorticoid receptor, indicating cooperation between the two. This is the first example of GABP cooperation with a steroid receptor, providing the opportunity for studying the integration of their intracellular signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammals, the circadian clock allows them to anticipate and adapt physiology around the 24 hours. Conversely, metabolism and food consumption regulate the internal clock, pointing the existence of an intricate relationship between nutrient state and circadian homeostasis that is far from being understood. The Sterol Regulatory Element Binding Protein 1 (SREBP1) is a key regulator of lipid homeostasis. Hepatic SREBP1 function is influenced by the nutrient-response cycle, but also by the circadian machinery. To systematically understand how the interplay of circadian clock and nutrient-driven rhythm regulates SREBP1 activity, we evaluated the genome-wide binding of SREBP1 to its targets throughout the day in C57BL/6 mice. The recruitment of SREBP1 to the DNA showed a highly circadian behaviour, with a maximum during the fed status. However, the temporal expression of SREBP1 targets was not always synchronized with its binding pattern. In particular, different expression phases were observed for SREBP1 target genes depending on their function, suggesting the involvement of other transcription factors in their regulation. Binding sites for Hepatocyte Nuclear Factor 4 (HNF4) were specifically enriched in the close proximity of SREBP1 peaks of genes, whose expression was shifted by about 8 hours with respect to SREBP1 binding. Thus, the cross-talk between hepatic HNF4 and SREBP1 may underlie the expression timing of this subgroup of SREBP1 targets. Interestingly, the proper temporal expression profile of these genes was dramatically changed in Bmal1-/- mice upon time-restricted feeding, for which a rhythmic, but slightly delayed, binding of SREBP1 was maintained. Collectively, our results show that besides the nutrient-driven regulation of SREBP1 nuclear translocation, a second layer of modulation of SREBP1 transcriptional activity, strongly dependent from the circadian clock, exists. This system allows us to fine tune the expression timing of SREBP1 target genes, thus helping to temporally separate the different physiological processes in which these genes are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.