262 resultados para HEAD VOLUME
Resumo:
Scanty data are available on the incidence (i.e., the absolute risk) of second cancers of the head and neck (HN) and its pattern with age. We investigated this issue using data from a multicentric study of 13 population-based cancer registries from Europe, Canada, Australia and Singapore for the years 1943-2000. A total of 99,257 patients had a first primary HN cancer (15,985 tongue, 22,378 mouth, 20,758 pharyngeal, and 40,190 laryngeal cancer), contributing to 489,855 person-years of follow-up. A total of 1,294 of the patients (1.3%) were diagnosed with second HN cancers (342 tongue, 345 mouth, 418 pharynx and 189 larynx). Male incidence rates of first HN cancer steeply increased from 0.68/100,000 at age 30-34 to 46.2/100,000 at age 70-74, and leveled off at older age; female incidence increased from 0.50/100,000 at age 30-34 to 16.5/100,000 at age 80-84. However, age-specific incidence of second HN cancers after a first HN cancer in men was around 200-300/100,000 between age 40-44 and age 70-74 and tended to decline at subsequent ages (150/100,000 at age 80-84); in women, incidence of second HN cancers was around 200-300/100,000 between age 45-49 and 80-84. The patterns of age-specific incidence were consistent for different subsites of second HN cancer and sexes; moreover, they were similar for age-specific incidence of first primary HN cancer in patients who subsequently developed a second HN cancer. The incidence of second HN cancers does not increase with age, but remains constant, or if anything, decreases with advancing age.
Resumo:
BACKGROUND: Quitting tobacco or alcohol use has been reported to reduce the head and neck cancer risk in previous studies. However, it is unclear how many years must pass following cessation of these habits before the risk is reduced, and whether the risk ultimately declines to the level of never smokers or never drinkers. METHODS: We pooled individual-level data from case-control studies in the International Head and Neck Cancer Epidemiology Consortium. Data were available from 13 studies on drinking cessation (9167 cases and 12 593 controls), and from 17 studies on smoking cessation (12 040 cases and 16 884 controls). We estimated the effect of quitting smoking and drinking on the risk of head and neck cancer and its subsites, by calculating odds ratios (ORs) using logistic regression models. RESULTS: Quitting tobacco smoking for 1-4 years resulted in a head and neck cancer risk reduction [OR 0.70, confidence interval (CI) 0.61-0.81 compared with current smoking], with the risk reduction due to smoking cessation after >/=20 years (OR 0.23, CI 0.18-0.31), reaching the level of never smokers. For alcohol use, a beneficial effect on the risk of head and neck cancer was only observed after >/=20 years of quitting (OR 0.60, CI 0.40-0.89 compared with current drinking), reaching the level of never drinkers. CONCLUSIONS: Our results support that cessation of tobacco smoking and cessation of alcohol drinking protect against the development of head and neck cancer.
Resumo:
OBJECT: Cerebrovascular pressure reactivity is the ability of cerebral vessels to respond to changes in transmural pressure. A cerebrovascular pressure reactivity index (PRx) can be determined as the moving correlation coefficient between mean intracranial pressure (ICP) and mean arterial blood pressure. METHODS: The authors analyzed a database consisting of 398 patients with head injuries who underwent continuous monitoring of cerebrovascular pressure reactivity. In 298 patients, the PRx was compared with a transcranial Doppler ultrasonography assessment of cerebrovascular autoregulation (the mean index [Mx]), in 17 patients with the PET-assessed static rate of autoregulation, and in 22 patients with the cerebral metabolic rate for O(2). Patient outcome was assessed 6 months after injury. RESULTS: There was a positive and significant association between the PRx and Mx (R(2) = 0.36, p < 0.001) and with the static rate of autoregulation (R(2) = 0.31, p = 0.02). A PRx > 0.35 was associated with a high mortality rate (> 50%). The PRx showed significant deterioration in refractory intracranial hypertension, was correlated with outcome, and was able to differentiate patients with good outcome, moderate disability, severe disability, and death. The graph of PRx compared with cerebral perfusion pressure (CPP) indicated a U-shaped curve, suggesting that too low and too high CPP was associated with a disturbance in pressure reactivity. Such an optimal CPP was confirmed in individual cases and a greater difference between current and optimal CPP was associated with worse outcome (for patients who, on average, were treated below optimal CPP [R(2) = 0.53, p < 0.001] and for patients whose mean CPP was above optimal CPP [R(2) = -0.40, p < 0.05]). Following decompressive craniectomy, pressure reactivity initially worsened (median -0.03 [interquartile range -0.13 to 0.06] to 0.14 [interquartile range 0.12-0.22]; p < 0.01) and improved in the later postoperative course. After therapeutic hypothermia, in 17 (70.8%) of 24 patients in whom rewarming exceeded the brain temperature threshold of 37 degrees C, ICP remained stable, but the average PRx increased to 0.32 (p < 0.0001), indicating significant derangement in cerebrovascular reactivity. CONCLUSIONS: The PRx is a secondary index derived from changes in ICP and arterial blood pressure and can be used as a surrogate marker of cerebrovascular impairment. In view of an autoregulation-guided CPP therapy, a continuous determination of a PRx is feasible, but its value has to be evaluated in a prospective controlled trial.
Resumo:
Most cases of emphysema are managed conservatively. However, in severe symptomatic emphysema associated with hyperinflation, lung volume reduction (LVR) may be proposed to improve dyspnea, exercice capacity, pulmonary functions, walk distance and to decrease long-term mortality. LVR may be achieved either surgically (LVRS) or endoscopically (EVLR by valves or coils) according to specific clinical criteria. Currently, the optimal approach is discussed in a multidisciplinary setting. The latter permits a personalized evaluation the patient's clinical status and allows the best possible therapeutic intervention to be proposed to the patient.
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).
Resumo:
INTRODUCTION. Neurally Adjusted Ventilatory Assist (NAVA) is an assisted ventilatorymode in which the ventilator is driven by the electrical activity of the diaphragm (Eadi).NAVAimproves patient-ventilator synchrony [1] but little is known about how to set the NAVA gaini.e., how to choose the ratio between Eadi and delivered pressure. The aim of the present studywas to assess the relationship between Eadi and tidal volume (Vt) at various NAVA gainsettings and to evaluate whether modifying the gain influenced this relationship in non-invasivelyventilated (NIV) patients.METHODS. Prospective interventional study comparing 3 values of NAVA gain during NIV(20 min each). NAVA100 was set by the clinician according to the manufacturer's recommendations.In NAVA50 and NAVA150 the gain was set as -50% and +50% of NAVA100gain respectively. Vt and maximal Eadi value (Eadi max) were recorded. The ratio Vt/Eadi wasthen assessed for each breath. 5-95% range (range 90) of Vt/Eadi was calculated for eachpatient at each NAVA gain setting. Vt/Eadi ratio has the advantage to give an objectiveassessment Vt/Eadi max relationship independently from the nature of this relationship. Asmaller Range90 indicates a better matching of Vt to Eadi max.RESULTS. 12 patients were included, 5 had obstructive pulmonary disease and 2 mixedobstructive and restrictive disease. For NAVA100, the median [IQR] Range 90 was 32[19-87]. For NAVA150 Range 90 was 37 [20-95] and for NAVA50 Range 90 was 33 [16-92].That means that globally NAVA100 allowed a better match between Eadi max and Vt thanNAVA50 and 150. However, by patient, NAVA100 had the lowest Range 90 value for only 4patients (33%), NAVA150 for 2 (17%) and NAVA50 for 6 (50%) patients, indicating thatNAVA100 was not the best NAVA gain for minimizing Range 90 in every patients.Comparing the lowest Range 90 value to the next lowest for each patient, showed that 3 patientshad differences of less than 10% (one each for NAVA50, NAVA100 and NAVA150). Theremainder had differences from 17 to 24%, indicating that most patients (9/12 or 75%) had aclear better match between Eadi and Vt for one specific NAVA gain.CONCLUSIONS. Different NAVA gains yielded markedly different ability to match Vt toEadi max. This approach could be a new way to determine optimalNAVAgain for each patientbut require further investigations.REFERENCE. Piquilloud L, et al. Intensive Care Med 2011;37:263-71.
Resumo:
Frequent expression of cancer testis antigens (CTA) has been consistently observed in head and neck squamous cell carcinomas (HNSCC). For instance, in 52 HNSCC patients, MAGE-A3 and -A4 CTA were expressed in over 75% of tumors, regardless of the sites of primary tumors such as oral cavity or hypopharynx. Yet, T-cell responses against these CTA in tumor-bearing patients have not been investigated in detail. In this study, we assessed the naturally acquired T-cell response against MAGE-A3 and -A4 in nonvaccinated HNSCC patients. Autologous antigen-presenting cells pulsed with overlapping peptide pools were used to detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from healthy donors and seven head and neck cancer patients. CD4(+) T-cell clones were characterized by cytokine secretion. We could detect and isolate MAGE-A3 and MAGE-A4 specific CD4(+) T cells from 7/7 cancer patients analyzed. Moreover, we identified six previously described and three new epitopes for MAGE-A3. Among them, the MAGE-A3(111-125) and MAGE-A3(161-175) epitopes were shown to be naturally processed and presented by DC in association with HLA-DP and DR, respectively. All of the detected MAGE-A4 responses were specific for new helper epitopes. These data suggest that naturally acquired CD4(+) T-cell responses against CT antigens often occur in vivo in HNSCC cancer patients and provide a rationale for the development of active immunotherapeutic approaches in this type of tumor.
Resumo:
BACKGROUND: In numerous high-risk medical and surgical conditions, a greater volume of patients undergoing treatment in a given setting or facility is associated with better survival. For patients with pulmonary embolism, the relation between the number of patients treated in a hospital (volume) and patient outcome is unknown. METHODS: We studied discharge records from 186 acute care hospitals in Pennsylvania for a total of 15 531 patients for whom the primary diagnosis was pulmonary embolism. The study outcomes were all-cause mortality in hospital and within 30 days after presentation for pulmonary embolism and the length of hospital stay. We used logistic models to study the association between hospital volume and 30-day mortality and discrete survival models to study the association between in-hospital mortality and time to hospital discharge. RESULTS: The median annual hospital volume for pulmonary embolism was 20 patients (interquartile range 10-42). Overall in-hospital mortality was 6.0%, whereas 30-day mortality was 9.3%. In multivariable analysis, very-high-volume hospitals (> or = 42 cases per year) had a significantly lower odds of in-hospital death (odds ratio [OR] 0.71, 95% confidence interval [CI] 0.51-0.99) and of 30-day death (OR 0.71, 95% CI 0.54-0.92) than very-low-volume hospitals (< 10 cases per year). Although patients in the very-high-volume hospitals had a slightly longer length of stay than those in the very-low-volume hospitals (mean difference 0.7 days), there was no association between volume and length of stay. INTERPRETATION: In hospitals with a high volume of cases, pulmonary embolism was associated with lower short-term mortality. Further research is required to determine the causes of the relation between volume and outcome for patients with pulmonary embolism.
Resumo:
Alcohol and tobacco consumption are well-recognized risk factors for head and neck cancer (HNC). Evidence suggests that genetic predisposition may also play a role. Only a few epidemiologic studies, however, have considered the relation between HNC risk and family history of HNC and other cancers. We pooled individual-level data across 12 case-control studies including 8,967 HNC cases and 13,627 controls. We obtained pooled odds ratios (OR) using fixed and random effect models and adjusting for potential confounding factors. All statistical tests were two-sided. A family history of HNC in first-degree relatives increased the risk of HNC (OR=1.7, 95% confidence interval, CI, 1.2-2.3). The risk was higher when the affected relative was a sibling (OR=2.2, 95% CI 1.6-3.1) rather than a parent (OR=1.5, 95% CI 1.1-1.8) and for more distal HNC anatomic sites (hypopharynx and larynx). The risk was also higher, or limited to, in subjects exposed to tobacco. The OR rose to 7.2 (95% CI 5.5-9.5) among subjects with family history, who were alcohol and tobacco users. A weak but significant association (OR=1.1, 95% CI 1.0-1.2) emerged for family history of other tobacco-related neoplasms, particularly with laryngeal cancer (OR=1.3, 95% CI 1.1-1.5). No association was observed for family history of nontobacco-related neoplasms and the risk of HNC (OR=1.0, 95% CI 0.9-1.1). Familial factors play a role in the etiology of HNC. In both subjects with and without family history of HNC, avoidance of tobacco and alcohol exposure may be the best way to avoid HNC.
Resumo:
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.